dc.contributor.author |
Chremmos, I |
en |
dc.contributor.author |
Uzunoglu, N |
en |
dc.date.accessioned |
2014-03-01T02:44:49Z |
|
dc.date.available |
2014-03-01T02:44:49Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/31957 |
|
dc.subject |
Channel dropping filters |
en |
dc.subject |
Coupled resonator optical waveguides |
en |
dc.subject |
Floquet theorem |
en |
dc.subject |
Microring resonators |
en |
dc.subject |
Photonic molecules |
en |
dc.subject |
Transfer matrix |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Integrated optoelectronics |
en |
dc.subject.other |
Molecules |
en |
dc.subject.other |
Optical communication |
en |
dc.subject.other |
Optical data processing |
en |
dc.subject.other |
Optical filters |
en |
dc.subject.other |
Optical materials |
en |
dc.subject.other |
Optical resonators |
en |
dc.subject.other |
Optical waveguides |
en |
dc.subject.other |
Resonance |
en |
dc.subject.other |
Resonators |
en |
dc.subject.other |
Semiconductor materials |
en |
dc.subject.other |
Solid state lasers |
en |
dc.subject.other |
Waveguides |
en |
dc.subject.other |
Channel dropping filters |
en |
dc.subject.other |
Coupled resonator optical waveguides |
en |
dc.subject.other |
Floquet theorem |
en |
dc.subject.other |
Microring resonators |
en |
dc.subject.other |
Photonic molecules |
en |
dc.subject.other |
Transfer matrix |
en |
dc.subject.other |
Transfer matrix method |
en |
dc.title |
Matrix analysis of coupled microring resonator polygons |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICTON.2007.4296355 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICTON.2007.4296355 |
en |
heal.identifier.secondary |
4296355 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
The resonant properties of a photonic molecule, composed by N microring resonators forming a regular polygon, are for the first time determined analytically using the transfer matrix method. It is found that the transfer matrix between rings n, n + 2, n + 4 , ... is independent of the polygon vertex angle, allowing the application of Floquet theorem for periodic propagation in a cylindrically symmetric structure. Corresponding to even or odd N, the molecule possesses 1 + N/2 or 1 + N discrete resonances, which satisfy the dispersion equation of the straight coupled-resonator optical waveguide (CROW) with infinite rings. The field amplitudes in the rings are determined as eigenvectors of the corresponding eigenvalue problem. By incorporating the molecule into a channel dropping filter system, the presence of these resonances in the transmission spectrum is verified. © 2007 IEEE. |
en |
heal.journalName |
Proceedings of 2007 9th International Conference on Transparent Optical Networks, ICTON 2007 |
en |
dc.identifier.doi |
10.1109/ICTON.2007.4296355 |
en |
dc.identifier.volume |
4 |
en |
dc.identifier.spage |
121 |
en |
dc.identifier.epage |
124 |
en |