HEAL DSpace

Motion tasks and force control for robot manipulators on embedded 2-D manifolds

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papageorgiou, X en
dc.contributor.author Loizou, SG en
dc.contributor.author Kyriakopoulos, KJ en
dc.date.accessioned 2014-03-01T02:44:50Z
dc.date.available 2014-03-01T02:44:50Z
dc.date.issued 2007 en
dc.identifier.issn 10504729 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31969
dc.subject Closed Form Solution en
dc.subject Collision Avoidance en
dc.subject Computer Simulation en
dc.subject Force Control en
dc.subject Motion Planning en
dc.subject Robot Manipulator en
dc.subject Trajectory Tracking en
dc.subject Vector Field en
dc.subject Real Time Systems en
dc.subject.other Force control en
dc.subject.other Motion planning en
dc.subject.other Navigation en
dc.subject.other Tracking (position) en
dc.subject.other Two dimensional en
dc.subject.other Vectors en
dc.subject.other End-effectors en
dc.subject.other Motion tasks en
dc.subject.other Robot manipulators en
dc.subject.other Workspace en
dc.subject.other Manipulators en
dc.title Motion tasks and force control for robot manipulators on embedded 2-D manifolds en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ROBOT.2007.364125 en
heal.identifier.secondary http://dx.doi.org/10.1109/ROBOT.2007.364125 en
heal.identifier.secondary 4209743 en
heal.publicationDate 2007 en
heal.abstract In this paper we present a methodology to drive the end effector of a robotic manipulator across the surface of an object in the workspace, and at the same time the manipulator can apply a force to the object, through its end-effector. Three typical tasks are considered, namely stabilization of the end effector over the object's surface and applying a specific force on it, motion planning and eventually trajectory tracking of the end effector across the object's surface. The proposed controllers utilize navigation functions and are based on the belt zone vector fields concept. The derived dynamic controllers are realized using an integrator backstepping methodology. The derived feedback based controllers guarantee global convergence and collision avoidance. The closed form solution provides fast feedback rendering the methodology particularly suitable for implementation on real time systems. The properties of the proposed methodology are verified through non-trivial computer simulations. © 2007 IEEE. en
heal.journalName Proceedings - IEEE International Conference on Robotics and Automation en
dc.identifier.doi 10.1109/ROBOT.2007.364125 en
dc.identifier.spage 4202 en
dc.identifier.epage 4207 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής