HEAL DSpace

Multilevel optimization strategies based on metamodel-assisted evolutionary algorithms, for computationally expensive problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kampolis, IC en
dc.contributor.author Zyinaris, AS en
dc.contributor.author Asouti, VG en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T02:44:50Z
dc.date.available 2014-03-01T02:44:50Z
dc.date.issued 2007 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31972
dc.subject Adjoint Method en
dc.subject Boundary Layer en
dc.subject Coarse Grained en
dc.subject Difference Set en
dc.subject Evolutionary Algorithm en
dc.subject Multiprocessor Systems en
dc.subject Objective Function en
dc.subject Optimal Method en
dc.subject Radial Basis Function Network en
dc.subject Search Engine en
dc.subject Shape Optimization en
dc.subject evolutionary algo rithm en
dc.subject Gradient Descent en
dc.subject navier stokes en
dc.subject.other Aforementioned techniques en
dc.subject.other Airfoil parameterizations en
dc.subject.other Multilevel optimization en
dc.subject.other Metadata en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Search engines en
dc.subject.other Set theory en
dc.subject.other Evolutionary algorithms en
dc.title Multilevel optimization strategies based on metamodel-assisted evolutionary algorithms, for computationally expensive problems en
heal.type conferenceItem en
heal.identifier.primary 10.1109/CEC.2007.4425008 en
heal.identifier.secondary http://dx.doi.org/10.1109/CEC.2007.4425008 en
heal.identifier.secondary 4425008 en
heal.publicationDate 2007 en
heal.abstract In this paper, three multilevel optimization strategies are presented and applied to the design of isolated and cascade airfoils. They are all based on the same general-purpose search platform, which employs Hierarchical, Distributed Metamodel - Assisted Evolutionary Algorithms (HDMAEAs). The core search engine is an Evolutionary Algorithm (EA) assisted by local metamodels (radial basis function networks) which, for each population member, are trained anew on a ""suitable"" subset of the already evaluated solutions. The hierarchical scheme has a two - level structure, although it may accommodate any number of levels. At each level, the user may link (a) a different evaluation tool, such as low or high fidelity discipline - specific software, (b) a different optimization method, selected amongst stochastic and deterministic algorithms and/or (c) a different set of design variables, according to coarse and fine problem parameterizations. In the aerodynamic shape optimization problems presented in this paper, the three aforementioned techniques resort on (a) Navier - Stokes and integral boundary layer solvers, (b) evolutionary and gradient-descent algorithms where the adjoint method computes the objective function gradient and (c) airfoil parameterizations with different numbers of Bézier control points. The EAs used at any level are coarse - grained distributed EAs with a different MAEA at each deme. The three variants of the HDMAEA can be used either separately or in combination, in order to reduce the CPU cost. The optimization software runs in parallel, on multiprocessor systems. ©2007 IEEE. en
heal.journalName 2007 IEEE Congress on Evolutionary Computation, CEC 2007 en
dc.identifier.doi 10.1109/CEC.2007.4425008 en
dc.identifier.spage 4116 en
dc.identifier.epage 4123 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής