HEAL DSpace

Online amnesie summarization of streaming locations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Potamias, M en
dc.contributor.author Patroumpas, K en
dc.contributor.author Seflis, T en
dc.date.accessioned 2014-03-01T02:44:52Z
dc.date.available 2014-03-01T02:44:52Z
dc.date.issued 2007 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31992
dc.subject Continuous Query en
dc.subject Data Stream en
dc.subject Individual Object en
dc.subject Moving Object en
dc.subject Time Series en
dc.subject Tree Structure en
dc.subject Near Real Time en
dc.subject.other Online maintenance en
dc.subject.other Streaming locations en
dc.subject.other Time-decaying approximation en
dc.subject.other Approximation theory en
dc.subject.other Data structures en
dc.subject.other Decision trees en
dc.subject.other Query processing en
dc.subject.other Requirements engineering en
dc.subject.other Storage allocation (computer) en
dc.subject.other Online systems en
dc.title Online amnesie summarization of streaming locations en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-73540-3_9 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-73540-3_9 en
heal.publicationDate 2007 en
heal.abstract Massive data streams of positional updates become increasingly difficult to manage under limited memory resources, especially in terms of providing near real-time response to multiple continuous queries. In this paper, we consider online maintenance for spatiotemporal summaries of streaming positions in an aging-aware fashion, by gradually evicting older observations in favor of greater precision for the most recent portions of movement. Although several amnesic functions have been proposed for approximation of time series, we opt for a simple, yet quite efficient scheme that achieves contiguity along all retained stream pieces. To this end, we adapt an amnesic tree structure that effectively meets the requirements of time-decaying approximation while taking advantage of the succession inherent in positional updates. We further exemplify the significance of this scheme in two important cases: the first one refers to trajectory compression of individual objects; the other offers estimated aggregates of moving object locations across time. Both techniques are validated with comprehensive experiments, confirming their suitability in maintaining online concise synopses for moving objects. © Springer-Verlag Berlin Heidelberg 2007. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-73540-3_9 en
dc.identifier.volume 4605 LNCS en
dc.identifier.spage 148 en
dc.identifier.epage 166 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής