HEAL DSpace

Optimal estimation of descriptor scales for multimedia retrieval

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, N en
dc.date.accessioned 2014-03-01T02:44:53Z
dc.date.available 2014-03-01T02:44:53Z
dc.date.issued 2007 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/31997
dc.subject Information Need en
dc.subject Multimedia Retrieval en
dc.subject Optimal Estimation en
dc.subject Relevance Feedback en
dc.subject.other Control theory en
dc.subject.other Feedback en
dc.subject.other Image analysis en
dc.subject.other Information retrieval en
dc.subject.other Military data processing en
dc.subject.other Neural networks en
dc.subject.other Best fit en
dc.subject.other descriptor en
dc.subject.other Descriptors en
dc.subject.other Dynamic modifications en
dc.subject.other Information needs en
dc.subject.other International (CO) en
dc.subject.other Multimedia contents en
dc.subject.other Multimedia interactive services en
dc.subject.other Multimedia retrieval en
dc.subject.other Optimal estimations en
dc.subject.other Relevance feedback (RRF) en
dc.subject.other Retrieval (MIR) en
dc.subject.other Retrieval performance en
dc.subject.other retrieval processes en
dc.subject.other User's preferences en
dc.subject.other Multimedia services en
dc.title Optimal estimation of descriptor scales for multimedia retrieval en
heal.type conferenceItem en
heal.identifier.primary 10.1109/WIAMIS.2007.64 en
heal.identifier.secondary http://dx.doi.org/10.1109/WIAMIS.2007.64 en
heal.identifier.secondary 4279186 en
heal.publicationDate 2007 en
heal.abstract Relevance feedback schemes use a given set of descriptors and at each feedback iteration they just modify the importance of each descriptor to the retrieval performance. This implies that the same type of descriptors is used for all feedback iterations. Therefore, such approaches cannot improve the retrieval performance beyond the efficiency of the descriptors used to represent the multimedia content. In this paper, an alternative concept is to adopt a progressive descriptor organization and to allow dynamic modification of the type of descriptors (expansion or shrink) at each retrieval iteration by exploiting the current user's information needs. In other words, descriptors that best fit the current user's preferences are expanded into more details, in constant to the descriptors that are far way from the user's needs which are shrinking. In this case, instead of using a large set of descriptors, most of them inappropriate with respect to the current user's information needs, a small number of dominant descriptors is selected for the retrieval process. Thus, the proposed approach significantly increases the precision performance by discarding descriptors that yield noise in the retrieval. © 2007 IEEE. en
heal.journalName 8th International Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS 2007 en
dc.identifier.doi 10.1109/WIAMIS.2007.64 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής