HEAL DSpace

Policy decision tree for academic digital collections

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koulouris, A en
dc.contributor.author Kapidakis, S en
dc.date.accessioned 2014-03-01T02:44:54Z
dc.date.available 2014-03-01T02:44:54Z
dc.date.issued 2007 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32014
dc.subject Academic Libraries en
dc.subject Digital Content en
dc.subject Information Management en
dc.subject Questionnaire Survey en
dc.subject Audio Video en
dc.subject Decision Tree en
dc.subject.other Analog to digital conversion en
dc.subject.other Data acquisition en
dc.subject.other Digital libraries en
dc.subject.other Information management en
dc.subject.other Academic digital collections en
dc.subject.other Copyright ownership en
dc.subject.other Reproduction policies en
dc.subject.other Decision trees en
dc.title Policy decision tree for academic digital collections en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-74851-9_47 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-74851-9_47 en
heal.publicationDate 2007 en
heal.abstract We present the results of a questionnaire survey for the access and reproduction policies of 67 digital collections in 34 libraries (national, academic, public, special etc) from 13 countries. We examine and analyze the above policies in relation to specific factors, such as, the acquisition method, copyright ownership, library type (national, academic, etc.), content creation (digitized, born-digital) and content type (audio, video, etc.); how these factors affect the policies of the examined digital collections. Responses were received from a range of library sectors but by far the best responses came from academic libraries, in which we focus. We extract policy (access, reproduction) rules and alternatives according to these factors that lead to a policy decision tree on digital information management for academic libraries. The resulting decision tree is based on a policy model; the model and tree are divided into two parts: for digitized and born-digital content. © Springer-Verlag Berlin Heidelberg 2007. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-74851-9_47 en
dc.identifier.volume 4675 LNCS en
dc.identifier.spage 481 en
dc.identifier.epage 484 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής