HEAL DSpace

Prediction of the collapse modes of PVC cylindrical shells under compressive axial loads using Artificial Neural Networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Markopoulos, AP en
dc.contributor.author Manolakos, DE en
dc.contributor.author Vaxevanidis, NM en
dc.date.accessioned 2014-03-01T02:44:55Z
dc.date.available 2014-03-01T02:44:55Z
dc.date.issued 2007 en
dc.identifier.issn 15715736 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32022
dc.subject Artificial Neural Network en
dc.subject Neural Network en
dc.title Prediction of the collapse modes of PVC cylindrical shells under compressive axial loads using Artificial Neural Networks en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-0-387-74161-1_27 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-0-387-74161-1_27 en
heal.publicationDate 2007 en
heal.abstract In the present paper Artificial Neural Networks (ANN) are applied in order to predict the buckling modes of thin-walled PVC tubes under compressive axial forces. For the development of the models the neural network toolbox of Matlab® was applied. The results show that these models can satisfactorily face these problems and they constitute not only a fast method, compared to time consuming experiments, but also a reliable tool that can be used for the studying of such parts which are usually employed as structural elements for the absorption of the energy of an impact, in automotive and aerospace applications. © 2007 International Federation for Information Processing. en
heal.journalName IFIP International Federation for Information Processing en
dc.identifier.doi 10.1007/978-0-387-74161-1_27 en
dc.identifier.volume 247 en
dc.identifier.spage 251 en
dc.identifier.epage 258 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής