dc.contributor.author |
Nomikos, C |
en |
dc.contributor.author |
Pagourtzis, A |
en |
dc.contributor.author |
Zachos, S |
en |
dc.date.accessioned |
2014-03-01T02:44:56Z |
|
dc.date.available |
2014-03-01T02:44:56Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32032 |
|
dc.subject |
Approximate Algorithm |
en |
dc.subject |
Maximum Matching |
en |
dc.subject |
Polynomial Time |
en |
dc.subject.other |
All-optical rings |
en |
dc.subject.other |
Polynomial time |
en |
dc.subject.other |
Approximation algorithms |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Pattern matching |
en |
dc.title |
Randomized and approximation algorithms for blue-red matching |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-74456-6_63 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-74456-6_63 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
We introduce the BLUE-RED MATCHING problem: given a graph with red and blue edges, and a bound w, find a maximum matching consisting of at most w edges of each color. We show that BLUE-RED MATCHING is at least as hard as the problem EXACT MATCHING (Papadimitriou and Yannakakis, 1982), for which it is still open whether it can be solved in polynomial time. We present an RNC algorithm for this problem as well as two fast approximation algorithms. We finally show the applicability of our results to the problem of routing and assigning wavelengths to a maximum number of requests in all-optical rings. © Springer-Verlag Berlin Heidelberg 2007. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-540-74456-6_63 |
en |
dc.identifier.volume |
4708 LNCS |
en |
dc.identifier.spage |
715 |
en |
dc.identifier.epage |
725 |
en |