HEAL DSpace

Semantic clustering of information systems' users with stochastic techniques

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Raftopoulos, K en
dc.contributor.author Papadakis, N en
dc.contributor.author Ntalianis, K en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T02:44:57Z
dc.date.available 2014-03-01T02:44:57Z
dc.date.issued 2007 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32042
dc.subject Markovian state clustering en
dc.subject Semantic clustering en
dc.subject User profile clustering en
dc.subject.other Chlorine compounds en
dc.subject.other Cluster analysis en
dc.subject.other Flow interactions en
dc.subject.other Flow of solids en
dc.subject.other Information theory en
dc.subject.other Rough set theory en
dc.subject.other Semantics en
dc.subject.other State space methods en
dc.subject.other Disjoint subsets en
dc.subject.other Information access en
dc.subject.other Information systems en
dc.subject.other International conferences en
dc.subject.other Keyword space en
dc.subject.other Markovian en
dc.subject.other Markovian models en
dc.subject.other Markovian state clustering en
dc.subject.other Semantic clustering en
dc.subject.other Semantic distance en
dc.subject.other Semantic relevance en
dc.subject.other State spaces en
dc.subject.other Stochastic techniques en
dc.subject.other Strong interactions en
dc.subject.other User profile clustering en
dc.subject.other User profiling en
dc.subject.other Weak interactions en
dc.subject.other Industrial economics en
dc.title Semantic clustering of information systems' users with stochastic techniques en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICSC.2007.27 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICSC.2007.27 en
heal.identifier.secondary 4338391 en
heal.publicationDate 2007 en
heal.abstract We use a Markovian model to capture the habitual user profiles of an information access system. In this model, the general as well as the individual for each user, profile is captured in the form of a Markovian process where the states are the keywords asked to the system by the users and a transition from state to state corresponds to the order theses keywords appeared in the queries. Under this model the probabilistic locality of the Markovian state space translates to semantical locality of the corresponding keywords in a way that a clustering of the Markovian state space corresponds to a semantic clustering of the keyword space. Since the states represent keywords asked by the users, the state space can grow very large, but at the same time it is partitioned into disjoint subsets such that strong interactions among the states of the same subset exists but weak interactions among states of different subsets. We exploit this structure to effectively cluster the large state space and reveal the corresponding semantic keyword clusters. We then define a semantic distance between the various user profiles that can be used to cluster the user space on the basis of keyword usage and keyword semantic relevance. The resulting clustering achieves high independence from the row data. Users for e.g. that never asked a common keyword may end up very close to each other if their keywords were asked together by many other users. © 2007 IEEE. en
heal.journalName ICSC 2007 International Conference on Semantic Computing en
dc.identifier.doi 10.1109/ICSC.2007.27 en
dc.identifier.spage 535 en
dc.identifier.epage 542 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής