HEAL DSpace

Simultaneous origin-destination matrix estimation in dynamic traffic networks with evolutionary computing

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsekeris, T en
dc.contributor.author Dimitriou, L en
dc.contributor.author Stathopoulos, A en
dc.date.accessioned 2014-03-01T02:44:57Z
dc.date.available 2014-03-01T02:44:57Z
dc.date.issued 2007 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32049
dc.subject Evolutionary computing en
dc.subject Microscopic simulation en
dc.subject Origindestination matrices en
dc.subject Traffic flows en
dc.subject Transportation networks en
dc.subject.other Flow patterns en
dc.subject.other Motor transportation en
dc.subject.other Parameter estimation en
dc.subject.other Transportation en
dc.subject.other Microscopic simulation en
dc.subject.other Origindestination matrices en
dc.subject.other Traffic flows en
dc.subject.other Transportation networks en
dc.subject.other Evolutionary algorithms en
dc.title Simultaneous origin-destination matrix estimation in dynamic traffic networks with evolutionary computing en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-71805-5_73 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-71805-5_73 en
heal.publicationDate 2007 en
heal.abstract This paper presents an evolutionary computing approach for the estimation of dynamic Origin-Destination (O-D) trip matrices from automatic traffic counts in urban networks. A multi-objective, simultaneous optimization problem is formulated to obtain a mutually consistent solution between the resulting O-D matrix and the path/link flow loading pattern. A genetically augmented microscopic simulation procedure is used to determine the path flow pattern between each O-D pair by estimating the set of turning proportions at each intersection. The proposed approach circumvents the restrictions associated with employing a user-optimal Dynamic Traffic Assignment (DTA) procedure and provides a stochastic global search of the optimal O-D trip and turning flow distributions. The application of the model into a real arterial street sub-network demonstrates its ability to provide results of satisfactory accuracy within fast computing speeds and, hence, its potential usefulness to support the deployment of dynamic urban traffic management systems. ©Springer- Verlag Berlin Heidelberg 2007. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-71805-5_73 en
dc.identifier.volume 4448 LNCS en
dc.identifier.spage 668 en
dc.identifier.epage 677 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής