dc.contributor.author |
Tsekeris, T |
en |
dc.contributor.author |
Dimitriou, L |
en |
dc.contributor.author |
Stathopoulos, A |
en |
dc.date.accessioned |
2014-03-01T02:44:57Z |
|
dc.date.available |
2014-03-01T02:44:57Z |
|
dc.date.issued |
2007 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32049 |
|
dc.subject |
Evolutionary computing |
en |
dc.subject |
Microscopic simulation |
en |
dc.subject |
Origindestination matrices |
en |
dc.subject |
Traffic flows |
en |
dc.subject |
Transportation networks |
en |
dc.subject.other |
Flow patterns |
en |
dc.subject.other |
Motor transportation |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Transportation |
en |
dc.subject.other |
Microscopic simulation |
en |
dc.subject.other |
Origindestination matrices |
en |
dc.subject.other |
Traffic flows |
en |
dc.subject.other |
Transportation networks |
en |
dc.subject.other |
Evolutionary algorithms |
en |
dc.title |
Simultaneous origin-destination matrix estimation in dynamic traffic networks with evolutionary computing |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-71805-5_73 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-71805-5_73 |
en |
heal.publicationDate |
2007 |
en |
heal.abstract |
This paper presents an evolutionary computing approach for the estimation of dynamic Origin-Destination (O-D) trip matrices from automatic traffic counts in urban networks. A multi-objective, simultaneous optimization problem is formulated to obtain a mutually consistent solution between the resulting O-D matrix and the path/link flow loading pattern. A genetically augmented microscopic simulation procedure is used to determine the path flow pattern between each O-D pair by estimating the set of turning proportions at each intersection. The proposed approach circumvents the restrictions associated with employing a user-optimal Dynamic Traffic Assignment (DTA) procedure and provides a stochastic global search of the optimal O-D trip and turning flow distributions. The application of the model into a real arterial street sub-network demonstrates its ability to provide results of satisfactory accuracy within fast computing speeds and, hence, its potential usefulness to support the deployment of dynamic urban traffic management systems. ©Springer- Verlag Berlin Heidelberg 2007. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-540-71805-5_73 |
en |
dc.identifier.volume |
4448 LNCS |
en |
dc.identifier.spage |
668 |
en |
dc.identifier.epage |
677 |
en |