HEAL DSpace

The ferry cover problem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lampis, M en
dc.contributor.author Mitsou, V en
dc.date.accessioned 2014-03-01T02:44:58Z
dc.date.available 2014-03-01T02:44:58Z
dc.date.issued 2007 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32065
dc.subject Approximation algorithms en
dc.subject Graph algorithms en
dc.subject Transportation problems en
dc.subject Vertex cover en
dc.subject Wolf-goat-cabbage puzzle en
dc.subject.other Approximation algorithms en
dc.subject.other Constraint theory en
dc.subject.other Graph theory en
dc.subject.other Problem solving en
dc.subject.other Set theory en
dc.subject.other Graph algorithms en
dc.subject.other Preliminary lemmata en
dc.subject.other Transportation problems en
dc.subject.other Wolf goat cabbage puzzles en
dc.subject.other Game theory en
dc.title The ferry cover problem en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-72914-3_20 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-72914-3_20 en
heal.publicationDate 2007 en
heal.abstract In the classical wolf-goat-cabbage puzzle, a ferry boat man must ferry three items across a river using a boat that has room for only one, without leaving two incompatible items on the same bank alone. In this paper we define and study a family of optimization problems called FERRY problems, which may be viewed as generalizations of this familiar puzzle. In all FERRY problems we are given a set of items and a graph with edges connecting items that must not be left together unattended. We present the FERRY COVER problem (FC), where the objective is to determine the minimum required boat size and demonstrate a close connection with VERTEX COVER which leads to hardness and approximation results. We also completely solve the problem on trees. Then we focus on a variation of the same problem with the added constraint that only 1 round-trip is allowed (FC1). We present a reduction from MAX-NAE-{3}-SAT which shows that this problem is NP-hard and APX-hard. We also provide an approximation algorithm for trees with a factor asymptotically equal to 4/3. Finally, we generalize the above problem to define FCm, where at most m round-trips are allowed, and MFTk, which is the problem of minimizing the number of round-trips when the boat capacity is k. We present some preliminary lemmata for both, which provide bounds on the value of the optimal solution, and relate them to FC. © Springer-Verlag Berlin Heidelberg 2007. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-72914-3_20 en
dc.identifier.volume 4475 LNCS en
dc.identifier.spage 227 en
dc.identifier.epage 239 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής