HEAL DSpace

The global-local transformation for invariant shape representation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Raftopoulos, KA en
dc.contributor.author Kollias, SD en
dc.date.accessioned 2014-03-01T02:44:58Z
dc.date.available 2014-03-01T02:44:58Z
dc.date.issued 2007 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32066
dc.subject Global-local transformation en
dc.subject Shape recognition en
dc.subject Shape representation en
dc.subject.other Database systems en
dc.subject.other Object recognition en
dc.subject.other Closed planar curves en
dc.subject.other Global-local transformation en
dc.subject.other Shape recognition en
dc.subject.other Shape representation en
dc.subject.other Computer vision en
dc.title The global-local transformation for invariant shape representation en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-76856-2_22 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-76856-2_22 en
heal.publicationDate 2007 en
heal.abstract We present the GlobalLocal (GL) transformation for closed planar curves. With this new transformation we can represent shape by means of two dimensional manifolds (surfaces) embedded into the unit cube. We explore some useful properties of the transform space and we demonstrate its high expressive power. We justify the high potential of the resulting invariant shape representations in object recognition by providing experimental results using the Kimia silhouette database. © Springer-Verlag Berlin Heidelberg 2007. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-76856-2_22 en
dc.identifier.volume 4842 LNCS en
dc.identifier.issue PART 2 en
dc.identifier.spage 224 en
dc.identifier.epage 233 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής