HEAL DSpace

Using selective sampling for the support of scalable and efficient network anomaly detection

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Androulidakis, G en
dc.contributor.author Chatzigiannakis, V en
dc.contributor.author Papavassiliou, S en
dc.date.accessioned 2014-03-01T02:45:00Z
dc.date.available 2014-03-01T02:45:00Z
dc.date.issued 2007 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32085
dc.subject Anomaly detection en
dc.subject Principal component analysis en
dc.subject Selective sampling en
dc.subject Traffic measurements en
dc.subject.other Anomaly detection en
dc.subject.other Anomaly detections en
dc.subject.other Essential components en
dc.subject.other Internet traffic monitoring en
dc.subject.other Network Anomaly detection en
dc.subject.other Network attacks en
dc.subject.other Performance evaluation en
dc.subject.other Principal component analysis (PCA) en
dc.subject.other Realistic data en
dc.subject.other Selective sampling en
dc.subject.other Traffic measurements en
dc.subject.other University campus en
dc.subject.other Worm propagations en
dc.subject.other Classification (of information) en
dc.subject.other Computer crime en
dc.subject.other Financial data processing en
dc.subject.other Internet en
dc.subject.other Sampling en
dc.subject.other Principal component analysis en
dc.title Using selective sampling for the support of scalable and efficient network anomaly detection en
heal.type conferenceItem en
heal.identifier.primary 10.1109/GLOCOMW.2007.4437785 en
heal.identifier.secondary 4437785 en
heal.identifier.secondary http://dx.doi.org/10.1109/GLOCOMW.2007.4437785 en
heal.publicationDate 2007 en
heal.abstract Sampling has become an essential component of scalable Internet traffic monitoring and anomaly detection. In this paper we consider the problem of studying and evaluating the impact of selective sampling on anomaly detection. Selective sampling focuses on the selection of small flows that are usually the source of many network attacks (DDoS, portscans, worm propagation). One of the key objectives of our study is to gain some insight about the feasibility and scalability of the anomaly detection process, by analyzing and understanding the tradeoff of reducing the volume of collected data while still maintaining the accuracy and effectiveness in the anomaly detection. The performance evaluation study is achieved through the adoption and application of an anomaly detection method based on Principal Component Analysis (PCA) using realistic data that have been collected from a real operational university campus network. en
heal.journalName GLOBECOM - IEEE Global Telecommunications Conference en
dc.identifier.doi 10.1109/GLOCOMW.2007.4437785 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής