dc.contributor.author |
Roussos, GP |
en |
dc.contributor.author |
Dimarogonas, DV |
en |
dc.contributor.author |
Kyriakopoulos, KJ |
en |
dc.date.accessioned |
2014-03-01T02:45:00Z |
|
dc.date.available |
2014-03-01T02:45:00Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
07431619 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32092 |
|
dc.subject |
3d navigation |
en |
dc.subject |
Collision Avoidance |
en |
dc.subject |
Control Strategy |
en |
dc.subject |
Feedback Control |
en |
dc.subject |
nonholonomic constraint |
en |
dc.subject |
3 dimensional |
en |
dc.subject.other |
Accidents |
en |
dc.subject.other |
Aircraft |
en |
dc.subject.other |
Aircraft accidents |
en |
dc.subject.other |
Collision avoidance |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Vehicles |
en |
dc.subject.other |
Weight control |
en |
dc.subject.other |
3-D navigation |
en |
dc.subject.other |
3-dimensional |
en |
dc.subject.other |
Arbitrary positions |
en |
dc.subject.other |
Control strategies |
en |
dc.subject.other |
Discontinuous feedbacks |
en |
dc.subject.other |
Motion modeling |
en |
dc.subject.other |
Navigation function |
en |
dc.subject.other |
Navigation functions |
en |
dc.subject.other |
Non-holonomic |
en |
dc.subject.other |
Non-holonomic constraint |
en |
dc.subject.other |
Non-trivial |
en |
dc.subject.other |
Simulation results |
en |
dc.subject.other |
Yaw rotation |
en |
dc.subject.other |
Air navigation |
en |
dc.title |
3D navigation and collision avoidance for a non-holonomic vehicle |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ACC.2008.4587037 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ACC.2008.4587037 |
en |
heal.identifier.secondary |
4587037 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
This paper expands the methodology of Navigation Functions for the control of a spherical aircraft-like 3-dimensional nonholonomic vehicle. A Dipolar Navigation Function is used to generate a feasible, non-holonomic trajectory for the vehicle that leads from an arbitrary position to the target, in combination with a discontinuous feedback control law that steers the vehicle. The motion model used incorporates the nonholonomic constraints imposed on an aircraft, preventing any movement along the lateral or perpendicular axis, as well as preventing high yaw rotation rates. The control strategy provides guaranteed collision avoidance and convergence, and is supported by non-trivial simulation results. ©2008 AACC. |
en |
heal.journalName |
Proceedings of the American Control Conference |
en |
dc.identifier.doi |
10.1109/ACC.2008.4587037 |
en |
dc.identifier.spage |
3512 |
en |
dc.identifier.epage |
3517 |
en |