3D navigation and collision avoidance for a non-holonomic vehicle

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Roussos, GP en
dc.contributor.author Dimarogonas, DV en
dc.contributor.author Kyriakopoulos, KJ en
dc.date.accessioned 2014-03-01T02:45:00Z
dc.date.available 2014-03-01T02:45:00Z
dc.date.issued 2008 en
dc.identifier.issn 07431619 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32092
dc.subject 3d navigation en
dc.subject Collision Avoidance en
dc.subject Control Strategy en
dc.subject Feedback Control en
dc.subject nonholonomic constraint en
dc.subject 3 dimensional en
dc.subject.other Accidents en
dc.subject.other Aircraft en
dc.subject.other Aircraft accidents en
dc.subject.other Collision avoidance en
dc.subject.other Three dimensional en
dc.subject.other Vehicles en
dc.subject.other Weight control en
dc.subject.other 3-D navigation en
dc.subject.other 3-dimensional en
dc.subject.other Arbitrary positions en
dc.subject.other Control strategies en
dc.subject.other Discontinuous feedbacks en
dc.subject.other Motion modeling en
dc.subject.other Navigation function en
dc.subject.other Navigation functions en
dc.subject.other Non-holonomic en
dc.subject.other Non-holonomic constraint en
dc.subject.other Non-trivial en
dc.subject.other Simulation results en
dc.subject.other Yaw rotation en
dc.subject.other Air navigation en
dc.title 3D navigation and collision avoidance for a non-holonomic vehicle en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ACC.2008.4587037 en
heal.identifier.secondary http://dx.doi.org/10.1109/ACC.2008.4587037 en
heal.identifier.secondary 4587037 en
heal.publicationDate 2008 en
heal.abstract This paper expands the methodology of Navigation Functions for the control of a spherical aircraft-like 3-dimensional nonholonomic vehicle. A Dipolar Navigation Function is used to generate a feasible, non-holonomic trajectory for the vehicle that leads from an arbitrary position to the target, in combination with a discontinuous feedback control law that steers the vehicle. The motion model used incorporates the nonholonomic constraints imposed on an aircraft, preventing any movement along the lateral or perpendicular axis, as well as preventing high yaw rotation rates. The control strategy provides guaranteed collision avoidance and convergence, and is supported by non-trivial simulation results. ©2008 AACC. en
heal.journalName Proceedings of the American Control Conference en
dc.identifier.doi 10.1109/ACC.2008.4587037 en
dc.identifier.spage 3512 en
dc.identifier.epage 3517 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record