dc.contributor.author |
Ferles, C |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:45:02Z |
|
dc.date.available |
2014-03-01T02:45:02Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
10823409 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32108 |
|
dc.subject |
Cross Section |
en |
dc.subject |
Dimensional Reduction |
en |
dc.subject |
Dynamic Programming Algorithm |
en |
dc.subject |
Large Scale |
en |
dc.subject |
Learning Algorithm |
en |
dc.subject |
Self Organization |
en |
dc.subject |
Self Organized Map |
en |
dc.subject |
Sequence Analysis |
en |
dc.subject |
Sequence Space |
en |
dc.subject |
Theoretical Foundation |
en |
dc.subject |
Gradient Descent |
en |
dc.subject |
Hidden Markov Model |
en |
dc.subject.other |
Algorithmic realizations |
en |
dc.subject.other |
Dimensionality reductions |
en |
dc.subject.other |
Dynamic Programming algorithms |
en |
dc.subject.other |
Fully integrated |
en |
dc.subject.other |
Gradient descent learning algorithms |
en |
dc.subject.other |
Self-organizing |
en |
dc.subject.other |
Sequence analysis |
en |
dc.subject.other |
Sequence spaces |
en |
dc.subject.other |
Unsupervised trainings |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Conformal mapping |
en |
dc.subject.other |
FORTH (programming language) |
en |
dc.subject.other |
Hidden Markov models |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Markov processes |
en |
dc.subject.other |
Object recognition |
en |
dc.subject.other |
Strength of materials |
en |
dc.subject.other |
Systems engineering |
en |
dc.subject.other |
Learning algorithms |
en |
dc.title |
A hybrid self-organizing model for sequence analysis |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICTAI.2008.108 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICTAI.2008.108 |
en |
heal.identifier.secondary |
4669762 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The Self-Organizing Hidden Markov Model Map (SOHMMM) constitutes a cross-section between the theoretic foundations and algorithmic realizations of the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM). The intimate fusion and synergy of the SOM unsupervised training and HMM dynamic programming algorithms brings forth a novel on-line gradient descent learning algorithm, which is fully integrated into the SOHMMM. The model is presented from both a theoretical and algorithmic perspective. The SOHMMM can have a variety of applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces, and also, in sequence discrimination, search and classification. © 2008 IEEE. |
en |
heal.journalName |
Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI |
en |
dc.identifier.doi |
10.1109/ICTAI.2008.108 |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.spage |
105 |
en |
dc.identifier.epage |
112 |
en |