dc.contributor.author |
Asteriadis, S |
en |
dc.contributor.author |
Karpouzis, K |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:45:03Z |
|
dc.date.available |
2014-03-01T02:45:03Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32112 |
|
dc.subject |
Eye gaze |
en |
dc.subject |
Facial feature detection |
en |
dc.subject |
Head pose |
en |
dc.subject |
User attention estimation |
en |
dc.subject.other |
Camera parameter |
en |
dc.subject.other |
Extracting information |
en |
dc.subject.other |
Eye gaze |
en |
dc.subject.other |
Facial feature detection |
en |
dc.subject.other |
Head pose |
en |
dc.subject.other |
Lighting conditions |
en |
dc.subject.other |
Neuro-fuzzy approach |
en |
dc.subject.other |
Real-time application |
en |
dc.subject.other |
Specific tasks |
en |
dc.subject.other |
Target group |
en |
dc.subject.other |
User attention |
en |
dc.subject.other |
User attention estimation |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Cameras |
en |
dc.subject.other |
Computer monitors |
en |
dc.subject.other |
E-learning |
en |
dc.subject.other |
Internet |
en |
dc.subject.other |
Multimedia systems |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Eye movements |
en |
dc.title |
A neuro-fuzzy approach to user attention recognition |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-87536-9_95 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-87536-9_95 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
User attention recognition in front of a monitor or a specific task is a crucial issue in many applications, ranging from e-learning to driving. Visual input is very important when extracting information regarding a user's attention when recorded with a camera. However, intrusive equipment (special helmets, glasses equipped with cameras recording the eye movements, etc.) impose constraints on users spontaneity, especially when the target group consists of under aged users. In this paper, we propose a system for inferring user attention (state) in front of a computer monitor, only with the usage of a simple camera. The system can be used for real time applications and does not need calibration in terms of camera parameters. It can function under normal lighting conditions and needs no adaptation for each user. © Springer-Verlag Berlin Heidelberg 2008. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-540-87536-9_95 |
en |
dc.identifier.volume |
5163 LNCS |
en |
dc.identifier.issue |
PART 1 |
en |
dc.identifier.spage |
927 |
en |
dc.identifier.epage |
936 |
en |