dc.contributor.author |
Gorpas, D |
en |
dc.contributor.author |
Politopoulos, K |
en |
dc.contributor.author |
Yova, D |
en |
dc.date.accessioned |
2014-03-01T02:45:03Z |
|
dc.date.available |
2014-03-01T02:45:03Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32113 |
|
dc.subject |
a priori information |
en |
dc.subject |
Fluorescence Imaging |
en |
dc.subject |
Inverse Problem |
en |
dc.subject |
Medical Image |
en |
dc.subject |
Molecular Imaging |
en |
dc.subject |
Region of Interest |
en |
dc.subject.other |
Fluorescence imaging |
en |
dc.subject.other |
Fluorescence molecular |
en |
dc.subject.other |
Inverse problem solution |
en |
dc.subject.other |
Non-linear |
en |
dc.subject.other |
Novel methods |
en |
dc.subject.other |
Region of interest |
en |
dc.subject.other |
Turbid medium |
en |
dc.subject.other |
Bioinformatics |
en |
dc.subject.other |
Fluorescence |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Inverse problems |
en |
dc.subject.other |
Medical problems |
en |
dc.subject.other |
Pixels |
en |
dc.subject.other |
Tumors |
en |
dc.subject.other |
Medical imaging |
en |
dc.title |
A new method for processing the forward solver data in fluorescence molecular imaging |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/BIBE.2008.4696666 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/BIBE.2008.4696666 |
en |
heal.identifier.secondary |
4696666 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
During the last few years a quite large number of fluorescence imaging applications have been reported in the literature, as one of the most challenging problems in medical imaging is to ""see"" a tumour embedded in tissue, which is a turbid medium. This problem has not been fully encountered yet, due to the non-linear nature of the inverse problem. In this paper, a novel method for processing the forward solver outcomes is presented. Through this technique the comparison between the simulated and the acquired data can be performed only at the region of interest, minimizing time-consuming pixel- to-pixel comparison. With this modus operandi a-priory information about the initial fluorophore distribution becomes available, leading to a more feasible inverse problem solution. |
en |
heal.journalName |
8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 |
en |
dc.identifier.doi |
10.1109/BIBE.2008.4696666 |
en |