dc.contributor.author |
Asteriadis, S |
en |
dc.contributor.author |
Tzouveli, P |
en |
dc.contributor.author |
Karpouzis, K |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:45:03Z |
|
dc.date.available |
2014-03-01T02:45:03Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32116 |
|
dc.subject |
Eye Gaze |
en |
dc.subject |
Eye Movement |
en |
dc.subject |
Focus of Attention |
en |
dc.subject |
Infrared |
en |
dc.subject |
Machine Learning |
en |
dc.subject |
Real Time |
en |
dc.subject.other |
Computer screens |
en |
dc.subject.other |
Detection and tracking |
en |
dc.subject.other |
Eye-gaze |
en |
dc.subject.other |
Focus of Attention |
en |
dc.subject.other |
Head pose |
en |
dc.subject.other |
Head position |
en |
dc.subject.other |
Infra-red cameras |
en |
dc.subject.other |
Machine-learning |
en |
dc.subject.other |
Non-intrusive method |
en |
dc.subject.other |
Real-time feedback |
en |
dc.subject.other |
Special hardware |
en |
dc.subject.other |
Wearable devices |
en |
dc.subject.other |
Web camera |
en |
dc.subject.other |
Cameras |
en |
dc.subject.other |
Computer monitors |
en |
dc.subject.other |
Eye movements |
en |
dc.subject.other |
Face recognition |
en |
dc.subject.other |
Tracking (position) |
en |
dc.subject.other |
Gesture recognition |
en |
dc.title |
A non-intrusive method for user focus of attention estimation in front of a computer monitor |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/AFGR.2008.4813330 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/AFGR.2008.4813330 |
en |
heal.identifier.secondary |
4813330 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this work, we present a system that estimates a user's focus of attention in front of a computer screen, using a web camera, based on detection and tracking of the user's head position and eye movements. Utilizing machine learning concepts, the system gives real time feedback on the user's attention, by combining information coming from eye gaze, head pose, and distance from the screen. The system is completely un-intrusive and no special hardware (such as infrared cameras or wearable devices) is needed. Furthermore, it adjusts to every user, not necessitating initial calibration, and can work under real and unconstrained conditions in terms of lighting. © 2008 IEEE. |
en |
heal.journalName |
2008 8th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2008 |
en |
dc.identifier.doi |
10.1109/AFGR.2008.4813330 |
en |