A PDE formulation for viscous morphological operators with extensions to intensity-adaptive operators

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Maragos, P en
dc.contributor.author Vachier, C en
dc.date.accessioned 2014-03-01T02:45:03Z
dc.date.available 2014-03-01T02:45:03Z
dc.date.issued 2008 en
dc.identifier.issn 15224880 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32118
dc.subject Adaptive filters en
dc.subject Morphological operations en
dc.subject Partial differential equations en
dc.subject.other Adaptive operators en
dc.subject.other Connected operator en
dc.subject.other Hyperbolic type en
dc.subject.other Intensity levels en
dc.subject.other Morphological operations en
dc.subject.other Morphological operator en
dc.subject.other Nonlinear partial differential equations en
dc.subject.other Numerical algorithms en
dc.subject.other Reconstruction filters en
dc.subject.other Theoretical aspects en
dc.subject.other Adaptive filtering en
dc.subject.other Adaptive filters en
dc.subject.other Aircraft engines en
dc.subject.other Computational fluid dynamics en
dc.subject.other Electric filters en
dc.subject.other Image analysis en
dc.subject.other Imaging systems en
dc.subject.other Mathematical morphology en
dc.subject.other Nonlinear equations en
dc.subject.other Partial differential equations en
dc.subject.other Mathematical operators en
dc.title A PDE formulation for viscous morphological operators with extensions to intensity-adaptive operators en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICIP.2008.4712226 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICIP.2008.4712226 en
heal.identifier.secondary 4712226 en
heal.publicationDate 2008 en
heal.abstract Viscous morphological operators have shown very good performance in regularizing various image analysis tasks such as detection of intensity-varying boundaries and segmentation. This paper presents a novel formulation of viscous morphological operators as solutions of nonlinear partial differential equations (PDEs) of the hyperbolic type with level-varying speed. Efficient numerical algorithms are also developed to solve these PDEs and generate the viscous operations. It also generalizes the viscous operators by studying the class of intensity level-varying operators, of which special cases are intensity adaptive connected operators such as volume openings and viscous reconstruction filters. We present both theoretical aspects and applications of the above ideas. © 2008 IEEE. en
heal.journalName Proceedings - International Conference on Image Processing, ICIP en
dc.identifier.doi 10.1109/ICIP.2008.4712226 en
dc.identifier.spage 2200 en
dc.identifier.epage 2203 en

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record