dc.contributor.author |
Maragos, P |
en |
dc.contributor.author |
Vachier, C |
en |
dc.date.accessioned |
2014-03-01T02:45:03Z |
|
dc.date.available |
2014-03-01T02:45:03Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
15224880 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32118 |
|
dc.subject |
Adaptive filters |
en |
dc.subject |
Morphological operations |
en |
dc.subject |
Partial differential equations |
en |
dc.subject.other |
Adaptive operators |
en |
dc.subject.other |
Connected operator |
en |
dc.subject.other |
Hyperbolic type |
en |
dc.subject.other |
Intensity levels |
en |
dc.subject.other |
Morphological operations |
en |
dc.subject.other |
Morphological operator |
en |
dc.subject.other |
Nonlinear partial differential equations |
en |
dc.subject.other |
Numerical algorithms |
en |
dc.subject.other |
Reconstruction filters |
en |
dc.subject.other |
Theoretical aspects |
en |
dc.subject.other |
Adaptive filtering |
en |
dc.subject.other |
Adaptive filters |
en |
dc.subject.other |
Aircraft engines |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Electric filters |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Imaging systems |
en |
dc.subject.other |
Mathematical morphology |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Mathematical operators |
en |
dc.title |
A PDE formulation for viscous morphological operators with extensions to intensity-adaptive operators |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICIP.2008.4712226 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICIP.2008.4712226 |
en |
heal.identifier.secondary |
4712226 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Viscous morphological operators have shown very good performance in regularizing various image analysis tasks such as detection of intensity-varying boundaries and segmentation. This paper presents a novel formulation of viscous morphological operators as solutions of nonlinear partial differential equations (PDEs) of the hyperbolic type with level-varying speed. Efficient numerical algorithms are also developed to solve these PDEs and generate the viscous operations. It also generalizes the viscous operators by studying the class of intensity level-varying operators, of which special cases are intensity adaptive connected operators such as volume openings and viscous reconstruction filters. We present both theoretical aspects and applications of the above ideas. © 2008 IEEE. |
en |
heal.journalName |
Proceedings - International Conference on Image Processing, ICIP |
en |
dc.identifier.doi |
10.1109/ICIP.2008.4712226 |
en |
dc.identifier.spage |
2200 |
en |
dc.identifier.epage |
2203 |
en |