HEAL DSpace

A robust approach towards sequential data modeling and its application in automatic gesture recognition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chatzis, S en
dc.contributor.author Kosmopoulos, DI en
dc.contributor.author Varvarigou, T en
dc.date.accessioned 2014-03-01T02:45:04Z
dc.date.available 2014-03-01T02:45:04Z
dc.date.issued 2008 en
dc.identifier.issn 15206149 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32124
dc.subject Pattern classification en
dc.subject Pattern clustering methods en
dc.subject Pattern recognition en
dc.subject.other Acoustics en
dc.subject.other Blind source separation en
dc.subject.other Communication channels (information theory) en
dc.subject.other Gesture recognition en
dc.subject.other Image segmentation en
dc.subject.other Markov processes en
dc.subject.other Mathematical models en
dc.subject.other Maximum likelihood estimation en
dc.subject.other Mixtures en
dc.subject.other Object recognition en
dc.subject.other Parameter estimation en
dc.subject.other Signal processing en
dc.subject.other Speech en
dc.subject.other Students en
dc.subject.other Time series analysis en
dc.subject.other Trees (mathematics) en
dc.subject.other Trellis codes en
dc.subject.other Pattern classification en
dc.subject.other Pattern clustering methods en
dc.subject.other Pattern recognition en
dc.subject.other State distributions en
dc.subject.other Hidden Markov models en
dc.title A robust approach towards sequential data modeling and its application in automatic gesture recognition en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICASSP.2008.4518015 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICASSP.2008.4518015 en
heal.identifier.secondary 4518015 en
heal.publicationDate 2008 en
heal.abstract Hidden Markov models using finite Gaussian mixture models as their hidden state distributions have been applied in modeling of time series that result from various noisy signals. Nevertheless, Gaussian mixture models are well-known to be highly intolerant to the presence of outliers within the fitting sets used for their estimation. Finite Student's-t mixture models have recently emerged as a heaviertailed, robust alternative to Gaussian mixture models, overcoming these hurdles. To exploit those merits of Student's-t mixture models, we introduce in this paper a novel hidden Markov chain model where the hidden state distributions are considered to be finite mixtures of multivariate Student's-t densities and we derive an algorithm for the model parameters estimation under a maximum likelihood framework. We apply this novel approach in automatic gesture recognition and we show that our model provides a substantial improvement in data representation performance and computational efficiency over the standard Gaussian model. ©2008 IEEE. en
heal.journalName ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings en
dc.identifier.doi 10.1109/ICASSP.2008.4518015 en
dc.identifier.spage 1937 en
dc.identifier.epage 1940 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής