HEAL DSpace

Adaptation of connectionist weighted fuzzy logic programs with Kripke-Kleene semantics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chortaras, A en
dc.contributor.author Stamou, G en
dc.contributor.author Stafylopatis, A en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T02:45:05Z
dc.date.available 2014-03-01T02:45:05Z
dc.date.issued 2008 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32138
dc.subject Adaptive Algorithm en
dc.subject Fuzzy Logic Programming en
dc.subject Fuzzy Rules en
dc.subject Learning Algorithm en
dc.subject.other Adaptation algorithms en
dc.subject.other Data sets en
dc.subject.other Fuzzy-logics en
dc.subject.other Negation as failures en
dc.subject.other Subgradient descent en
dc.subject.other Backpropagation en
dc.subject.other Fuzzy sets en
dc.subject.other Learning algorithms en
dc.subject.other Logic programming en
dc.subject.other Neural networks en
dc.subject.other Semantics en
dc.subject.other Fuzzy logic en
dc.title Adaptation of connectionist weighted fuzzy logic programs with Kripke-Kleene semantics en
heal.type conferenceItem en
heal.identifier.primary 10.1007/978-3-540-87536-9_51 en
heal.identifier.secondary http://dx.doi.org/10.1007/978-3-540-87536-9_51 en
heal.publicationDate 2008 en
heal.abstract Weighted fuzzy logic programs extend the expressiveness of fuzzy logic programs by allowing the association of a different significance weight with each atom that appears in the body of a fuzzy rule. The semantics and a connectionist representation of these programs have already been studied in the absence of negation; in this paper we first propose a Kripke-Kleene based semantics for the programs which allows for the use of negation as failure. Taking advantage of the increased modelling capabilities of the extended programs, we then describe their connectionist representation and study the problem of adapting the rule weights in order to fit a provided dataset. The adaptation algorithm we develop is based on the subgradient descent method and hence is appropriate to be employed as a learning algorithm for the training of the connectionist representation of the programs. © Springer-Verlag Berlin Heidelberg 2008. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.doi 10.1007/978-3-540-87536-9_51 en
dc.identifier.volume 5163 LNCS en
dc.identifier.issue PART 1 en
dc.identifier.spage 492 en
dc.identifier.epage 502 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής