dc.contributor.author |
Giannekou, V |
en |
dc.contributor.author |
Tzouveli, P |
en |
dc.contributor.author |
Avrithis, Y |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T02:45:05Z |
|
dc.date.available |
2014-03-01T02:45:05Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32144 |
|
dc.subject |
Affine Transformation |
en |
dc.subject |
Curve Matching |
en |
dc.subject |
Shape Similarity |
en |
dc.subject |
Curvature Scale Space |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Indexing (of information) |
en |
dc.subject.other |
Affine invariants |
en |
dc.subject.other |
Affine transformations |
en |
dc.subject.other |
Content-based multimedia |
en |
dc.subject.other |
Curvature scale spaces |
en |
dc.subject.other |
Curve matching |
en |
dc.subject.other |
Curve representations |
en |
dc.subject.other |
Local properties |
en |
dc.subject.other |
Lossless |
en |
dc.subject.other |
Matching algorithms |
en |
dc.subject.other |
Shape similarity and retrieval |
en |
dc.subject.other |
To curve |
en |
dc.subject.other |
Image registration |
en |
dc.title |
Affine invariant curve matching using normalization and curvature scale-space |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/CBMI.2008.4564948 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/CBMI.2008.4564948 |
en |
heal.identifier.secondary |
4564948 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper, an affine invariant curve matching method using curvature scale-space and normalization is proposed. Prior to curve matching, curve normalization with respect to affine transformations is applied, allowing a lossless affine invariant curve representation. The maxima points of the curvature scale-space (CSS) image are then used to represent the normalized curve, while retaining the local properties of the curve. The matching algorithm that follows, matches the maxima sets of CSS images and the resulting matching cost provides a measure of similarity. The method's performance and robustness is evaluated through a variety of curves and affine transformations, obtaining precise shape similarity and retrieval. ©2008 IEEE. |
en |
heal.journalName |
2008 International Workshop on Content-Based Multimedia Indexing, CBMI 2008, Conference Proceedings |
en |
dc.identifier.doi |
10.1109/CBMI.2008.4564948 |
en |
dc.identifier.spage |
208 |
en |
dc.identifier.epage |
215 |
en |