HEAL DSpace

An architecture for a self configurable video supervision

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, A en
dc.contributor.author Kosmopoulos, D en
dc.contributor.author Sardis, M en
dc.contributor.author Varvarigou, T en
dc.date.accessioned 2014-03-01T02:45:06Z
dc.date.available 2014-03-01T02:45:06Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32149
dc.subject Self configurable system en
dc.subject Visual Surveillance en
dc.subject.other Active camera en
dc.subject.other Adaptation mechanism en
dc.subject.other Application scenario en
dc.subject.other Automobile industry en
dc.subject.other Cognitive architectures en
dc.subject.other Manufacturing environments en
dc.subject.other Model evolution en
dc.subject.other Monitoring system en
dc.subject.other Object descriptors en
dc.subject.other Object learning en
dc.subject.other Self adaptation en
dc.subject.other Self-configurable en
dc.subject.other Video data en
dc.subject.other Video supervision en
dc.subject.other Visual surveillance en
dc.subject.other Weakly supervised learning en
dc.subject.other Coordination reactions en
dc.subject.other Management en
dc.subject.other Technical presentations en
dc.subject.other Video recording en
dc.subject.other Video streaming en
dc.subject.other Learning algorithms en
dc.title An architecture for a self configurable video supervision en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1463542.1463559 en
heal.identifier.secondary http://dx.doi.org/10.1145/1463542.1463559 en
heal.publicationDate 2008 en
heal.abstract In this paper, we propose a self configurable cognitive architecture for supervising video data in manufacturing environments. The architecture supports weakly supervised learning algorithms and self-adaptation strategies for analysis of visually observable procedures. The research proposed directly affects ease of deployment and minimises effort of operation of monitoring systems and is unique in the sense that it links object learning using low-level object descriptors and procedure learning with adaptation mechanisms and active camera network coordination. The architecture advocates a synergistic approach that combines largely unsupervised learning and model evolution in a bootstrapping process, while the application scenario is very complex taken from an automobile industry. Copyright 2008 ACM. en
heal.journalName MM'08 - Proceedings of the 2008 ACM International Conference on Multimedia, with co-located Symposium and Workshops en
dc.identifier.doi 10.1145/1463542.1463559 en
dc.identifier.spage 97 en
dc.identifier.epage 104 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής