dc.contributor.author |
Papakonstantinou, KG |
en |
dc.contributor.author |
Dimizas, PC |
en |
dc.contributor.author |
Koumousis, VK |
en |
dc.date.accessioned |
2014-03-01T02:45:06Z |
|
dc.date.available |
2014-03-01T02:45:06Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1070-9622 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32153 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-48249136146&partnerID=40&md5=cb3b9d6e9d69a3e1a729c01cec5ec2d9 |
en |
dc.subject |
Beam vibrations |
en |
dc.subject |
Bouc-Wen model |
en |
dc.subject |
Hysteretic damping |
en |
dc.subject |
Nonlinear system identification |
en |
dc.subject.classification |
Acoustics |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Beams and girders |
en |
dc.subject.other |
Boolean functions |
en |
dc.subject.other |
Equations of motion |
en |
dc.subject.other |
Equations of state |
en |
dc.subject.other |
Hysteresis |
en |
dc.subject.other |
Iron |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Plastics |
en |
dc.subject.other |
Runge Kutta methods |
en |
dc.subject.other |
Springs (components) |
en |
dc.subject.other |
State space methods |
en |
dc.subject.other |
Steel |
en |
dc.subject.other |
Steel beams and girders |
en |
dc.subject.other |
Stiffness |
en |
dc.subject.other |
Sulfate minerals |
en |
dc.subject.other |
Beam elements |
en |
dc.subject.other |
Beam modeling |
en |
dc.subject.other |
Classical theory |
en |
dc.subject.other |
Dynamic behaviors |
en |
dc.subject.other |
Experimental data |
en |
dc.subject.other |
Hysteretic behavior |
en |
dc.subject.other |
Hysteretic damping |
en |
dc.subject.other |
Inelastic behavior |
en |
dc.subject.other |
Model parameters |
en |
dc.subject.other |
Non-linear system identification |
en |
dc.subject.other |
Nonlinear springing |
en |
dc.subject.other |
Plastic regions |
en |
dc.subject.other |
Runge-Kutta |
en |
dc.subject.other |
Spring elements |
en |
dc.subject.other |
State spaces |
en |
dc.subject.other |
Steel beams |
en |
dc.subject.other |
Stiffness degradation |
en |
dc.subject.other |
Damping |
en |
dc.title |
An inelastic beam element with hysteretic damping |
en |
heal.type |
conferenceItem |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this work, an inelastic beam macro-element that incorporates hysteretic damping is presented. Based on classical theory of plasticity, a Bouc-Wen type model is utilized that simulates the hysteretic behavior of an inelastic spring element. Using this model, an inelastic nonlinear beam element is formulated based on the appropriate combination of two coupled nonlinear spring elements. The equations of motion are determined and are cast in a state-space form for the vector of the end displacements, velocities and hysteretic forces. The system is solved by employing a Runge-Kutta type of algorithm. The proposed inelastic beam model is then employed to simulate the experimental dynamic behavior of steel beams. The model parameters are estimated with the aid of a nonlinear system identification algorithm using existing experimental data. The proposed element approximates the inelastic behavior of steel beams adequately within plastic regions that do not undergo substantial stiffness degradation, or other relevant phenomena. Finally, the hysteretic damping features of the model are demonstrated. |
en |
heal.publisher |
IOS PRESS |
en |
heal.journalName |
Shock and Vibration |
en |
dc.identifier.isi |
ISI:000256906000007 |
en |
dc.identifier.volume |
15 |
en |
dc.identifier.issue |
3-4 |
en |
dc.identifier.spage |
273 |
en |
dc.identifier.epage |
290 |
en |