HEAL DSpace

An intelligent mechanism for adaptive peer user modeling in web-based environments

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Giannoukos, I en
dc.contributor.author Lykourentzou, I en
dc.contributor.author Mpardis, G en
dc.contributor.author Nikolopoulos, V en
dc.contributor.author Loumos, V en
dc.contributor.author Kayafas, E en
dc.date.accessioned 2014-03-01T02:45:06Z
dc.date.available 2014-03-01T02:45:06Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32157
dc.subject Feed Forward Neural Network en
dc.subject Peer Assessment en
dc.subject User Model en
dc.subject.other E-learning en
dc.subject.other Information theory en
dc.subject.other Intelligent control en
dc.subject.other Internet en
dc.subject.other Multimedia systems en
dc.subject.other Semantics en
dc.subject.other Feed-forward neural networks en
dc.subject.other Intelligent mechanisms en
dc.subject.other Novel techniques en
dc.subject.other Peer assessments en
dc.subject.other User Modeling en
dc.subject.other Web-based environments en
dc.subject.other Neural networks en
dc.title An intelligent mechanism for adaptive peer user modeling in web-based environments en
heal.type conferenceItem en
heal.identifier.primary 10.1109/SMAP.2008.33 en
heal.identifier.secondary http://dx.doi.org/10.1109/SMAP.2008.33 en
heal.identifier.secondary 4724869 en
heal.publicationDate 2008 en
heal.abstract Peer assessment techniques are an effective means to take advantage of the knowledge that exists in webbased peer environments. Through these techniques, participants act both as authors and reviewers over each other's work. However, as web-based cooperating environments continuously grow in popularity, there is a need to develop intelligent mechanisms that will retrieve the optimal group of reviewers to comment on the work of each author, with a view to increasing the usefulness that these comments will have on the author's final result. This paper introduces a novel technique that incorporates feed forward neural networks to determine the optimal reviewers for a specific author during a peer assessment procedure. The proposed method seeks to match author to reviewer profiles based on feedback regarding the usefulness of reviewer comments as it was perceived by the author. The method was tested on educational e-learning data and the preliminary results that it yielded are promising. © 2008 IEEE. en
heal.journalName Proceedings - 3rd International Workshop on Semantic Media Adaptation and Personalization, SMAP 2008 en
dc.identifier.doi 10.1109/SMAP.2008.33 en
dc.identifier.spage 177 en
dc.identifier.epage 182 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής