HEAL DSpace

Angle spectrum for estimation of trajectory deviation using combined tracking and neural network labeling

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, N en
dc.contributor.author Vescoukis, V en
dc.contributor.author Georgopoulos, A en
dc.date.accessioned 2014-03-01T02:45:07Z
dc.date.available 2014-03-01T02:45:07Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32160
dc.subject Automatic neural-based labeling en
dc.subject Curve spectrum en
dc.subject Motion-based tracking en
dc.subject.other Classification scheme en
dc.subject.other Curve representations en
dc.subject.other Curve spectrum en
dc.subject.other Foreground objects en
dc.subject.other Foreground/background en
dc.subject.other Frame differencing en
dc.subject.other Fusion algorithms en
dc.subject.other Matching scheme en
dc.subject.other Morphological opening en
dc.subject.other Motion-based tracking en
dc.subject.other Moving objects en
dc.subject.other Moving regions en
dc.subject.other Neural network classifier en
dc.subject.other Neural network model en
dc.subject.other Non-linear en
dc.subject.other Nonlinear identifications en
dc.subject.other Polar coordinate en
dc.subject.other Rigid motions en
dc.subject.other Texture properties en
dc.subject.other Trajectory deviation en
dc.subject.other Vehicle trajectories en
dc.subject.other Image coding en
dc.subject.other Labeling en
dc.subject.other Management en
dc.subject.other Spectrum analysis en
dc.subject.other Technical presentations en
dc.subject.other Trajectories en
dc.subject.other Vehicles en
dc.subject.other Video streaming en
dc.subject.other Neural networks en
dc.title Angle spectrum for estimation of trajectory deviation using combined tracking and neural network labeling en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1463542.1463547 en
heal.identifier.secondary http://dx.doi.org/10.1145/1463542.1463547 en
heal.publicationDate 2008 en
heal.abstract In this paper, we combine rigid motion-based tracking algorithms and non-linear identification methods for automatic detecting and tracking vehicles' trajectory in roadways. In addition, we introduce the concept of the angle spectrum for determining the deviation of a vehicle trajectory from the ideal trace, provided by surveyor engineers. Motion-based tracking is implemented through frame differencing and advanced non-linear convolution filters such as the morphological opening by reconstruction. However, motion based tracking suffers from noise, occlusions and the fact that the detected moving region may contains more than one foreground objects (e.g., a vehicle approach another vehicle). For this reason, a neural network-based classification scheme is adopted in this paper for identifying foreground/background objects. The neural network models the colour and texture properties of the detected moving objects. Fusion algorithm are then exploited which it combine the output of the neural network classifier and the output of the motion-based tracking for efficiently detecting the vehicles trajectory. In the following, we introduce the concept of the angle spectrum which estimates the deviation between two curves, i.e., the vehicle trajectory and the ideal trace. The angle spectrum is computed through quantization of the polar coordinate space, adopted for the curve representation along with novel matching schemes. Experimental results are presented, which indicate the performance of the proposed method in real file environments. Copyright 2008 ACM. en
heal.journalName MM'08 - Proceedings of the 2008 ACM International Conference on Multimedia, with co-located Symposium and Workshops en
dc.identifier.doi 10.1145/1463542.1463547 en
dc.identifier.spage 25 en
dc.identifier.epage 32 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής