HEAL DSpace

Application of relevance feedback in content based image retrieval using gaussian mixture models

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Marakakis, A en
dc.contributor.author Galatsanos, N en
dc.contributor.author Likas, A en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T02:45:07Z
dc.date.available 2014-03-01T02:45:07Z
dc.date.issued 2008 en
dc.identifier.issn 10823409 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32163
dc.subject Content Based Image Retrieval en
dc.subject Distance Measure en
dc.subject Gaussian Mixture en
dc.subject Gaussian Mixture Model en
dc.subject Image Features en
dc.subject Image Retrieval en
dc.subject Negative Feedback en
dc.subject Probability Density Function en
dc.subject Relevance Feedback en
dc.subject.other Artificial intelligence en
dc.subject.other Content based retrieval en
dc.subject.other Control theory en
dc.subject.other Feedback en
dc.subject.other Granular materials en
dc.subject.other Image enhancement en
dc.subject.other Image retrieval en
dc.subject.other Information retrieval en
dc.subject.other Photographic accessories en
dc.subject.other Probability en
dc.subject.other Trellis codes en
dc.subject.other Closed forms en
dc.subject.other Content-based image retrievals en
dc.subject.other Distance measures en
dc.subject.other Gaussian en
dc.subject.other Gaussian Mixture models en
dc.subject.other GM models en
dc.subject.other Image features en
dc.subject.other Models of the users en
dc.subject.other Negative feedbacks en
dc.subject.other Probability densities en
dc.subject.other Relevance feedbacks en
dc.subject.other Probability density function en
dc.title Application of relevance feedback in content based image retrieval using gaussian mixture models en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICTAI.2008.110 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICTAI.2008.110 en
heal.identifier.secondary 4669682 en
heal.publicationDate 2008 en
heal.abstract In this paper a relevance feedback (RF) approach for content based image retrieval (CBIR) is described and evaluated. The approach uses Gaussian Mixture (GM) models of the image features and a query that is updated in a probabilistic manner. This update reflects the preferences of the user and is based on the models of both positive and negative feedback images. Retrieval is based on a recently proposed distance measure between probability density functions (pdfs), which can be computed in closed form for GM models. The proposed approach takes advantage of the form of this distance measure and updates it very efficiently based on the models of the user specified relevant and irrelevant images. For evaluation purposes, comparative experimental results are presented that demonstrate the merits of the proposed methodology. © 2008 IEEE. en
heal.journalName Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI en
dc.identifier.doi 10.1109/ICTAI.2008.110 en
dc.identifier.volume 1 en
dc.identifier.spage 141 en
dc.identifier.epage 148 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής