dc.contributor.author |
Marakakis, A |
en |
dc.contributor.author |
Galatsanos, N |
en |
dc.contributor.author |
Likas, A |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:45:07Z |
|
dc.date.available |
2014-03-01T02:45:07Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
10823409 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32163 |
|
dc.subject |
Content Based Image Retrieval |
en |
dc.subject |
Distance Measure |
en |
dc.subject |
Gaussian Mixture |
en |
dc.subject |
Gaussian Mixture Model |
en |
dc.subject |
Image Features |
en |
dc.subject |
Image Retrieval |
en |
dc.subject |
Negative Feedback |
en |
dc.subject |
Probability Density Function |
en |
dc.subject |
Relevance Feedback |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Content based retrieval |
en |
dc.subject.other |
Control theory |
en |
dc.subject.other |
Feedback |
en |
dc.subject.other |
Granular materials |
en |
dc.subject.other |
Image enhancement |
en |
dc.subject.other |
Image retrieval |
en |
dc.subject.other |
Information retrieval |
en |
dc.subject.other |
Photographic accessories |
en |
dc.subject.other |
Probability |
en |
dc.subject.other |
Trellis codes |
en |
dc.subject.other |
Closed forms |
en |
dc.subject.other |
Content-based image retrievals |
en |
dc.subject.other |
Distance measures |
en |
dc.subject.other |
Gaussian |
en |
dc.subject.other |
Gaussian Mixture models |
en |
dc.subject.other |
GM models |
en |
dc.subject.other |
Image features |
en |
dc.subject.other |
Models of the users |
en |
dc.subject.other |
Negative feedbacks |
en |
dc.subject.other |
Probability densities |
en |
dc.subject.other |
Relevance feedbacks |
en |
dc.subject.other |
Probability density function |
en |
dc.title |
Application of relevance feedback in content based image retrieval using gaussian mixture models |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ICTAI.2008.110 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ICTAI.2008.110 |
en |
heal.identifier.secondary |
4669682 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper a relevance feedback (RF) approach for content based image retrieval (CBIR) is described and evaluated. The approach uses Gaussian Mixture (GM) models of the image features and a query that is updated in a probabilistic manner. This update reflects the preferences of the user and is based on the models of both positive and negative feedback images. Retrieval is based on a recently proposed distance measure between probability density functions (pdfs), which can be computed in closed form for GM models. The proposed approach takes advantage of the form of this distance measure and updates it very efficiently based on the models of the user specified relevant and irrelevant images. For evaluation purposes, comparative experimental results are presented that demonstrate the merits of the proposed methodology. © 2008 IEEE. |
en |
heal.journalName |
Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI |
en |
dc.identifier.doi |
10.1109/ICTAI.2008.110 |
en |
dc.identifier.volume |
1 |
en |
dc.identifier.spage |
141 |
en |
dc.identifier.epage |
148 |
en |