dc.contributor.author |
Karantzalos, K |
en |
dc.contributor.author |
Argialas, D |
en |
dc.date.accessioned |
2014-03-01T02:45:09Z |
|
dc.date.available |
2014-03-01T02:45:09Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0143-1161 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32172 |
|
dc.subject |
Automatic Detection |
en |
dc.subject |
Computer Vision |
en |
dc.subject |
Development Process |
en |
dc.subject |
Edge Detection |
en |
dc.subject |
Environmental Monitoring |
en |
dc.subject |
Feature Extraction |
en |
dc.subject |
Image Segmentation |
en |
dc.subject |
Legislation |
en |
dc.subject |
Level Set |
en |
dc.subject |
Oil Spill |
en |
dc.subject |
Remote Sensing |
en |
dc.subject |
Shape Deformation |
en |
dc.subject |
Variational Method |
en |
dc.subject |
Real Time |
en |
dc.subject.classification |
Remote Sensing |
en |
dc.subject.classification |
Imaging Science & Photographic Technology |
en |
dc.subject.other |
Accidents |
en |
dc.subject.other |
Coastal zones |
en |
dc.subject.other |
Edge detection |
en |
dc.subject.other |
Hazardous materials spills |
en |
dc.subject.other |
Image processing |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Level measurement |
en |
dc.subject.other |
Marine pollution |
en |
dc.subject.other |
Offshore oil well production |
en |
dc.subject.other |
Oil spills |
en |
dc.subject.other |
Separation |
en |
dc.subject.other |
Sewage |
en |
dc.subject.other |
Synthetic apertures |
en |
dc.subject.other |
Target drones |
en |
dc.subject.other |
Wastewater |
en |
dc.subject.other |
Automatic detections |
en |
dc.subject.other |
Coastal environments |
en |
dc.subject.other |
Detection techniques |
en |
dc.subject.other |
Image simplifications |
en |
dc.subject.other |
Level sets |
en |
dc.subject.other |
Oil spill detections |
en |
dc.subject.other |
Pre-processing |
en |
dc.subject.other |
Processing schemes |
en |
dc.subject.other |
SAR imageries |
en |
dc.subject.other |
Shape deformations |
en |
dc.subject.other |
Time detections |
en |
dc.subject.other |
Oil well production |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
conference proceeding |
en |
dc.subject.other |
detection method |
en |
dc.subject.other |
image analysis |
en |
dc.subject.other |
monitoring |
en |
dc.subject.other |
oil spill |
en |
dc.subject.other |
radar imagery |
en |
dc.subject.other |
segmentation |
en |
dc.subject.other |
synthetic aperture radar |
en |
dc.subject.other |
tracking |
en |
dc.title |
Automatic detection and tracking of oil spills in SAR imagery with level set segmentation |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1080/01431160802175488 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/01431160802175488 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Automatic detection and monitoring of oil spills and illegal oil discharges is of fundamental importance in ensuring compliance with marine legislation and protection of the coastal environments, which are under considerable threat from intentional or accidental oil spills, uncontrolled sewage and wastewater discharged. In this paper, the level set based image segmentation was evaluated for the real-time detection and tracking of oil spills from SAR imagery. The processing scheme developed consists of a pre-processing step, in which an advanced image simplification takes place, followed by a geometric level set segmentation for the detection of possible oil spills. Finally, a classification was performed for the separation of look-alikes, leading to oil spill extraction. Experimental results demonstrate that the level set segmentation is a robust tool for the detection of possible oil spills, copes well with abrupt shape deformations and splits and outperforms earlier efforts that were based on different types of thresholds or edge detection techniques. The developed algorithm's efficiency for real-time oil spill detection and monitoring was also tested. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
International Journal of Remote Sensing |
en |
dc.identifier.doi |
10.1080/01431160802175488 |
en |
dc.identifier.isi |
ISI:000260326200016 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
21 |
en |
dc.identifier.spage |
6281 |
en |
dc.identifier.epage |
6296 |
en |