dc.contributor.author |
Caridakis, G |
en |
dc.contributor.author |
Diamanti, O |
en |
dc.contributor.author |
Karpouzis, K |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T02:45:10Z |
|
dc.date.available |
2014-03-01T02:45:10Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32174 |
|
dc.subject |
Feature extraction |
en |
dc.subject |
Geodesic Active Contour models |
en |
dc.subject |
Gesture recognition |
en |
dc.subject |
Hidden Markov Models |
en |
dc.subject |
Image segmentation |
en |
dc.subject |
Markov Models |
en |
dc.subject |
Optical flow |
en |
dc.subject |
Self-organizing maps |
en |
dc.subject |
Sign language recognition |
en |
dc.subject.other |
Computational grammars |
en |
dc.subject.other |
Computer vision |
en |
dc.subject.other |
Conformal mapping |
en |
dc.subject.other |
Decoding |
en |
dc.subject.other |
Digital image storage |
en |
dc.subject.other |
Extractive metallurgy |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Geodesy |
en |
dc.subject.other |
Gesture recognition |
en |
dc.subject.other |
Image processing |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Linguistics |
en |
dc.subject.other |
Markov processes |
en |
dc.subject.other |
Object recognition |
en |
dc.subject.other |
Optical flows |
en |
dc.subject.other |
Optical projectors |
en |
dc.subject.other |
Self organizing maps |
en |
dc.subject.other |
Skin |
en |
dc.subject.other |
Speech recognition |
en |
dc.subject.other |
Active contours |
en |
dc.subject.other |
Adaptive architectures |
en |
dc.subject.other |
Classification schemes |
en |
dc.subject.other |
Computer vision techniques |
en |
dc.subject.other |
Geodesic Active Contour models |
en |
dc.subject.other |
Hand detections |
en |
dc.subject.other |
Hand shapes |
en |
dc.subject.other |
Markov chains |
en |
dc.subject.other |
Markov Models |
en |
dc.subject.other |
Motion informations |
en |
dc.subject.other |
Optical flow |
en |
dc.subject.other |
Optimal utilizations |
en |
dc.subject.other |
Research problems |
en |
dc.subject.other |
Sign language recognition |
en |
dc.subject.other |
Skin colors |
en |
dc.subject.other |
Vision-based |
en |
dc.subject.other |
Work focus |
en |
dc.subject.other |
Hidden Markov models |
en |
dc.title |
Automatic sign language recognition: Vision based feature extraction and probabilistic recognition scheme from multiple cues |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/1389586.1389687 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1389586.1389687 |
en |
heal.identifier.secondary |
89 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
This work focuses on two of the research problems comprising automatic sign language recognition, namely robust computer vision techniques for consistent hand detection and tracking, while preserving the hand shape contour which is useful for extraction of features related to the handshape and a novel classification scheme incorporating Self-organizing maps, Markov chains and Hidden Markov Models. Geodesic Active Contours enhanced with skin color and motion information are employed for the hand detection and the extraction of the hand silhouette, while features extracted describe hand trajectory, region and shape. Extracted features are used as input to separate classifiers, forming a robust and adaptive architecture whose main contribution is the optimal utilization of the neighboring characteristic of the SOM during the decoding stage of the Markov chain, representing the sign class. Copyright 2008 ACM. |
en |
heal.journalName |
1st International Conference on Pervasive Technologies Related to Assistive Environments, PETRA 2008 |
en |
dc.identifier.doi |
10.1145/1389586.1389687 |
en |