dc.contributor.author |
Pissis, P |
en |
dc.contributor.author |
Fragiadakis, D |
en |
dc.contributor.author |
Kanapitsas, A |
en |
dc.contributor.author |
Delides, K |
en |
dc.date.accessioned |
2014-03-01T02:45:10Z |
|
dc.date.available |
2014-03-01T02:45:10Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
10221360 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32177 |
|
dc.subject |
Dielectric spectroscopy |
en |
dc.subject |
Glass transition |
en |
dc.subject |
Polymer nanocomposites |
en |
dc.subject |
Segmental dynamics |
en |
dc.subject.other |
ABS resins |
en |
dc.subject.other |
Butadiene |
en |
dc.subject.other |
Clay minerals |
en |
dc.subject.other |
Conducting polymers |
en |
dc.subject.other |
Diamond deposits |
en |
dc.subject.other |
Diamonds |
en |
dc.subject.other |
Dielectric devices |
en |
dc.subject.other |
Dielectric spectroscopy |
en |
dc.subject.other |
Differential scanning calorimetry |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Epoxy resins |
en |
dc.subject.other |
Free volume |
en |
dc.subject.other |
Glass |
en |
dc.subject.other |
Glass transition |
en |
dc.subject.other |
Laser interferometry |
en |
dc.subject.other |
Metallic matrix composites |
en |
dc.subject.other |
Molecular dynamics |
en |
dc.subject.other |
Nanocomposites |
en |
dc.subject.other |
Nanoparticles |
en |
dc.subject.other |
Nanostructures |
en |
dc.subject.other |
Organic polymers |
en |
dc.subject.other |
Polyimides |
en |
dc.subject.other |
Polymer matrix composites |
en |
dc.subject.other |
Polymers |
en |
dc.subject.other |
Quantum chemistry |
en |
dc.subject.other |
Resins |
en |
dc.subject.other |
Silica |
en |
dc.subject.other |
Styrene |
en |
dc.subject.other |
Broad frequency ranges |
en |
dc.subject.other |
Broadband dielectric relaxation spectroscopies |
en |
dc.subject.other |
Carbon nanoparticles |
en |
dc.subject.other |
Diamond nanoparticles |
en |
dc.subject.other |
Dielectric behaviors |
en |
dc.subject.other |
Frequency domains |
en |
dc.subject.other |
Geometrical confinements |
en |
dc.subject.other |
Inorganic nanoparticles |
en |
dc.subject.other |
Molecular mobilities |
en |
dc.subject.other |
Molecular packings |
en |
dc.subject.other |
Polymer nanocomposites |
en |
dc.subject.other |
Polymeric nanocomposites |
en |
dc.subject.other |
Resin matrixes |
en |
dc.subject.other |
Segmental dynamics |
en |
dc.subject.other |
Silica nanocomposites |
en |
dc.subject.other |
Smectite clays |
en |
dc.subject.other |
Structure and morphologies |
en |
dc.subject.other |
Thermally stimulated depolarization currents |
en |
dc.subject.other |
Nanostructured materials |
en |
dc.title |
Broadband dielectric relaxation spectroscopy in polymer nanocomposites |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1002/masy.200850502 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/masy.200850502 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Dielectric spectroscopy in the frequency domain and thermally stimulated depolarization currents techniques, covering together a broad frequency range (10-4-109 Hz), were employed to investigate molecular dynamics in relation to structure and morphology in polymeric nanocomposites. Several systems were investigated, three of them with the same epoxy resin matrix and different inclusions (modified smectite clay, conducting carbon nanoparticles and diamond nanoparticles) and two with silica nanofiller (styrene-butadiene rubber/silica and polyimide/ silica nanocomposites). Special attention was paid to the investigation of segmental dynamics associated with the glass transition of the polymer matrix, in combination also with differential scanning calorimetry measurements. Effects of nanoparticles on local (secondary) relaxations and on the overall dielectric behavior were, however, also investigated. Several interesting results were obtained and discussed for each of the particular systems. Two opposite effects seem to be common to the nanocomposites studied and dominate their behavior: (i) immobilization/reduction of mobility of a fraction of the chains at the interface to the inorganic nanoparticles, due to chemical or physical bonds with the particles, and (2) loosened molecular packing of the chains, due to tethering and geometrical confinement, resulting in an increase of free volume and of molecular mobility. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA. |
en |
heal.journalName |
Macromolecular Symposia |
en |
dc.identifier.doi |
10.1002/masy.200850502 |
en |
dc.identifier.volume |
265 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
12 |
en |
dc.identifier.epage |
20 |
en |