HEAL DSpace

Clonal selection-based neural classifier

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lanaridis, A en
dc.contributor.author Karakasis, V en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T02:45:11Z
dc.date.available 2014-03-01T02:45:11Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32187
dc.subject Artificial Immune System en
dc.subject Benchmark Problem en
dc.subject Clonal Selection en
dc.subject Multi Layer Perceptron en
dc.subject.other Artificial Immune Systems en
dc.subject.other Basic concepts en
dc.subject.other Benchmark problems en
dc.subject.other Clonal Selection Principles en
dc.subject.other Clonal selections en
dc.subject.other Input datums en
dc.subject.other Multilayer perceptrons en
dc.subject.other Multiple sets en
dc.subject.other Neural classifiers en
dc.subject.other Pattern recognition and classifications en
dc.subject.other Trained classifiers en
dc.subject.other Classifiers en
dc.subject.other Feature extraction en
dc.subject.other Intelligent control en
dc.subject.other Intelligent systems en
dc.subject.other Learning systems en
dc.subject.other Neural networks en
dc.subject.other Pattern recognition en
dc.subject.other Pattern recognition systems en
dc.title Clonal selection-based neural classifier en
heal.type conferenceItem en
heal.identifier.primary 10.1109/HIS.2008.82 en
heal.identifier.secondary http://dx.doi.org/10.1109/HIS.2008.82 en
heal.identifier.secondary 4626705 en
heal.publicationDate 2008 en
heal.abstract Artificial Immune Systems (AIS) constitute an emerging and promising field, and have been applied to pattern recognition and classification tasks to a limited extent so far. This work is a first attempt of applying the clonal selection principle to the training of MultiLayer Perceptrons (MLPs). The Clonal Selectionbased Neural Classifier (CSNC) uses the basic concepts of clonal selection to evolve MLPs, which are represented as real-valued linear antibodies. The proposed system is actually a multi-classifier, consisting of multiple sets of MLPs, each one devoted to the recognition of a different class of the input data. The final trained classifier is comprised of the best MLPs from each set. The proposed classifier is tested against a set of benchmark problems and yields promising results. © 2008 IEEE. en
heal.journalName Proceedings - 8th International Conference on Hybrid Intelligent Systems, HIS 2008 en
dc.identifier.doi 10.1109/HIS.2008.82 en
dc.identifier.spage 655 en
dc.identifier.epage 660 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής