HEAL DSpace

Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Polychronaki, GE en
dc.contributor.author Ktonas, P en
dc.contributor.author Gatzonis, S en
dc.contributor.author Asvestas, PA en
dc.contributor.author Spanou, E en
dc.contributor.author Siatouni, A en
dc.contributor.author Tsekou, H en
dc.contributor.author Sakas, D en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:45:11Z
dc.date.available 2014-03-01T02:45:11Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32192
dc.subject Epileptic Seizure en
dc.subject Estimation Algorithm en
dc.subject Fractal Dimension en
dc.subject K Nearest Neighbor en
dc.subject Onset Detection en
dc.subject Time Series en
dc.subject False Positive Rate en
dc.subject.other EEG analysis en
dc.subject.other EEG recording en
dc.subject.other Epileptic seizures en
dc.subject.other False positive rates en
dc.subject.other Fractal dimension estimation en
dc.subject.other K-nearest neighbors en
dc.subject.other k-NN algorithm en
dc.subject.other Natural measure en
dc.subject.other Bioinformatics en
dc.subject.other Electroencephalography en
dc.subject.other Finite difference method en
dc.subject.other Fractal dimension en
dc.subject.other Online searching en
dc.subject.other Partial discharges en
dc.subject.other Time series analysis en
dc.subject.other Algorithms en
dc.title Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection en
heal.type conferenceItem en
heal.identifier.primary 10.1109/BIBE.2008.4696822 en
heal.identifier.secondary http://dx.doi.org/10.1109/BIBE.2008.4696822 en
heal.identifier.secondary 4696822 en
heal.publicationDate 2008 en
heal.abstract The fractal dimension (FD) is a natural measure of the irregularity of a curve. In this study the performances of two FD-based methodologies are compared in terms of their ability to detect the onset of epileptic seizures in scalp EEC The FD algorithms used is Katz's, which has been broadly utilized in the EEG analysis literature, and the k-nearest neighbor (k-NN), which is applied in this study in a time series sense for the first time. 244.9 hours of EEG recordings, including 16 seizures in 3 patients, were analyzed. Both approaches achieved 100% sensitivity with a false positive rate of 0.85 FP/h for the k- NN algorithm and 1 FP/h for Katz's algorithm. The corresponding detection delays were 6.5 s and 10.5 s on the average, respectively. The k-NN algorithm seems to outperform Katz's algorithm. Results are satisfactory in comparison to other methodologies applied on scalp EEG and proposed in the literature. en
heal.journalName 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 en
dc.identifier.doi 10.1109/BIBE.2008.4696822 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής