dc.contributor.author |
Polychronaki, GE |
en |
dc.contributor.author |
Ktonas, P |
en |
dc.contributor.author |
Gatzonis, S |
en |
dc.contributor.author |
Asvestas, PA |
en |
dc.contributor.author |
Spanou, E |
en |
dc.contributor.author |
Siatouni, A |
en |
dc.contributor.author |
Tsekou, H |
en |
dc.contributor.author |
Sakas, D |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.date.accessioned |
2014-03-01T02:45:11Z |
|
dc.date.available |
2014-03-01T02:45:11Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32192 |
|
dc.subject |
Epileptic Seizure |
en |
dc.subject |
Estimation Algorithm |
en |
dc.subject |
Fractal Dimension |
en |
dc.subject |
K Nearest Neighbor |
en |
dc.subject |
Onset Detection |
en |
dc.subject |
Time Series |
en |
dc.subject |
False Positive Rate |
en |
dc.subject.other |
EEG analysis |
en |
dc.subject.other |
EEG recording |
en |
dc.subject.other |
Epileptic seizures |
en |
dc.subject.other |
False positive rates |
en |
dc.subject.other |
Fractal dimension estimation |
en |
dc.subject.other |
K-nearest neighbors |
en |
dc.subject.other |
k-NN algorithm |
en |
dc.subject.other |
Natural measure |
en |
dc.subject.other |
Bioinformatics |
en |
dc.subject.other |
Electroencephalography |
en |
dc.subject.other |
Finite difference method |
en |
dc.subject.other |
Fractal dimension |
en |
dc.subject.other |
Online searching |
en |
dc.subject.other |
Partial discharges |
en |
dc.subject.other |
Time series analysis |
en |
dc.subject.other |
Algorithms |
en |
dc.title |
Comparison of fractal dimension estimation algorithms for epileptic seizure onset detection |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/BIBE.2008.4696822 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/BIBE.2008.4696822 |
en |
heal.identifier.secondary |
4696822 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The fractal dimension (FD) is a natural measure of the irregularity of a curve. In this study the performances of two FD-based methodologies are compared in terms of their ability to detect the onset of epileptic seizures in scalp EEC The FD algorithms used is Katz's, which has been broadly utilized in the EEG analysis literature, and the k-nearest neighbor (k-NN), which is applied in this study in a time series sense for the first time. 244.9 hours of EEG recordings, including 16 seizures in 3 patients, were analyzed. Both approaches achieved 100% sensitivity with a false positive rate of 0.85 FP/h for the k- NN algorithm and 1 FP/h for Katz's algorithm. The corresponding detection delays were 6.5 s and 10.5 s on the average, respectively. The k-NN algorithm seems to outperform Katz's algorithm. Results are satisfactory in comparison to other methodologies applied on scalp EEG and proposed in the literature. |
en |
heal.journalName |
8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 |
en |
dc.identifier.doi |
10.1109/BIBE.2008.4696822 |
en |