dc.contributor.author |
Chortaras, A |
en |
dc.contributor.author |
Stamou, G |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.date.accessioned |
2014-03-01T02:45:12Z |
|
dc.date.available |
2014-03-01T02:45:12Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0925-2312 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32199 |
|
dc.subject |
Connectionist-symbolic integration |
en |
dc.subject |
Fuzzy logic programming |
en |
dc.subject |
Imperfect knowledge representation |
en |
dc.subject |
Rule adaptation |
en |
dc.subject |
Subgradient descent learning |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
Computer programming |
en |
dc.subject.other |
Education |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Fuzzy systems |
en |
dc.subject.other |
Information theory |
en |
dc.subject.other |
Knowledge representation |
en |
dc.subject.other |
Learning algorithms |
en |
dc.subject.other |
Learning systems |
en |
dc.subject.other |
Logic programming |
en |
dc.subject.other |
Connectionist-symbolic integration |
en |
dc.subject.other |
Fuzzy logic programming |
en |
dc.subject.other |
Imperfect knowledge representation |
en |
dc.subject.other |
Rule adaptation |
en |
dc.subject.other |
Subgradient descent learning |
en |
dc.subject.other |
Fuzzy logic |
en |
dc.subject.other |
analytical error |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
conceptual framework |
en |
dc.subject.other |
conference paper |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
fuzzy logic |
en |
dc.subject.other |
knowledge |
en |
dc.subject.other |
learning algorithm |
en |
dc.subject.other |
machine learning |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
normal distribution |
en |
dc.subject.other |
parametric test |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
probability |
en |
dc.subject.other |
semantics |
en |
dc.title |
Connectionist weighted fuzzy logic programs |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1016/j.neucom.2007.11.034 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.neucom.2007.11.034 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Fuzzy logic programs are a useful framework for imperfect knowledge representation and reasoning using the formalism of logic programming. Nevertheless, there is the need for modeling adaptation of fuzzy logic programs, so that machine learning techniques, such as connectionist-based learning, can be applied. Weighted fuzzy logic programs bring fuzzy logic programs and connectionist models closer together by associating a significant weight with each atom in the body of a fuzzy rule: by exploiting the existence of the weights, it is possible to construct a connectionist model that reflects the exact structure of a weighted fuzzy logic program. Based on the connectionist representation, we first define the weight adaptation problem as the task of adapting the weights of the rules of a weighted fuzzy logic program, so that they fit: best a set of training data, and then we develop a subgradient descent learning algorithm for the connectionist model that allows us to obtain an approximate solution for the weight adaptation problem. (C) 2008 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Neurocomputing |
en |
dc.identifier.doi |
10.1016/j.neucom.2007.11.034 |
en |
dc.identifier.isi |
ISI:000259121100006 |
en |
dc.identifier.volume |
71 |
en |
dc.identifier.issue |
13-15 |
en |
dc.identifier.spage |
2456 |
en |
dc.identifier.epage |
2469 |
en |