HEAL DSpace

Connectionist weighted fuzzy logic programs

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chortaras, A en
dc.contributor.author Stamou, G en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T02:45:12Z
dc.date.available 2014-03-01T02:45:12Z
dc.date.issued 2008 en
dc.identifier.issn 0925-2312 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32199
dc.subject Connectionist-symbolic integration en
dc.subject Fuzzy logic programming en
dc.subject Imperfect knowledge representation en
dc.subject Rule adaptation en
dc.subject Subgradient descent learning en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Computer programming en
dc.subject.other Education en
dc.subject.other Fuzzy sets en
dc.subject.other Fuzzy systems en
dc.subject.other Information theory en
dc.subject.other Knowledge representation en
dc.subject.other Learning algorithms en
dc.subject.other Learning systems en
dc.subject.other Logic programming en
dc.subject.other Connectionist-symbolic integration en
dc.subject.other Fuzzy logic programming en
dc.subject.other Imperfect knowledge representation en
dc.subject.other Rule adaptation en
dc.subject.other Subgradient descent learning en
dc.subject.other Fuzzy logic en
dc.subject.other analytical error en
dc.subject.other artificial neural network en
dc.subject.other conceptual framework en
dc.subject.other conference paper en
dc.subject.other controlled study en
dc.subject.other fuzzy logic en
dc.subject.other knowledge en
dc.subject.other learning algorithm en
dc.subject.other machine learning en
dc.subject.other mathematical computing en
dc.subject.other normal distribution en
dc.subject.other parametric test en
dc.subject.other priority journal en
dc.subject.other probability en
dc.subject.other semantics en
dc.title Connectionist weighted fuzzy logic programs en
heal.type conferenceItem en
heal.identifier.primary 10.1016/j.neucom.2007.11.034 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.neucom.2007.11.034 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Fuzzy logic programs are a useful framework for imperfect knowledge representation and reasoning using the formalism of logic programming. Nevertheless, there is the need for modeling adaptation of fuzzy logic programs, so that machine learning techniques, such as connectionist-based learning, can be applied. Weighted fuzzy logic programs bring fuzzy logic programs and connectionist models closer together by associating a significant weight with each atom in the body of a fuzzy rule: by exploiting the existence of the weights, it is possible to construct a connectionist model that reflects the exact structure of a weighted fuzzy logic program. Based on the connectionist representation, we first define the weight adaptation problem as the task of adapting the weights of the rules of a weighted fuzzy logic program, so that they fit: best a set of training data, and then we develop a subgradient descent learning algorithm for the connectionist model that allows us to obtain an approximate solution for the weight adaptation problem. (C) 2008 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Neurocomputing en
dc.identifier.doi 10.1016/j.neucom.2007.11.034 en
dc.identifier.isi ISI:000259121100006 en
dc.identifier.volume 71 en
dc.identifier.issue 13-15 en
dc.identifier.spage 2456 en
dc.identifier.epage 2469 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής