dc.contributor.author |
Karousos, EI |
en |
dc.contributor.author |
Ginnis, AI |
en |
dc.contributor.author |
Kaklis, PD |
en |
dc.date.accessioned |
2014-03-01T02:45:12Z |
|
dc.date.available |
2014-03-01T02:45:12Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32203 |
|
dc.subject |
Shape |
en |
dc.subject |
Spatial curve |
en |
dc.subject |
Torsion |
en |
dc.subject.other |
Control point |
en |
dc.subject.other |
Curve representations |
en |
dc.subject.other |
Parametric domains |
en |
dc.subject.other |
Shape |
en |
dc.subject.other |
Spatial curve |
en |
dc.subject.other |
Spatial curves |
en |
dc.subject.other |
Sub-interval |
en |
dc.subject.other |
Torsion |
en |
dc.subject.other |
Geometry |
en |
dc.subject.other |
Torsional stress |
en |
dc.title |
Controlling torsion sign |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-79246-8-7 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-79246-8-7 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We present a method for computing the domain, where a control point is free to move so that the corresponding spatial curve is regular and of constant sign of torsion along a subinterval of its parametric domain of definition. The approach encompasses all curve representations that adopt the control-point paradigm and is illustrated for a spatial Bézier curve. © 2008 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-540-79246-8-7 |
en |
dc.identifier.volume |
4975 LNCS |
en |
dc.identifier.spage |
92 |
en |
dc.identifier.epage |
106 |
en |