HEAL DSpace

CUZ: An improved clustering algorithm

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Aslanidis, T en
dc.contributor.author Souliou, D en
dc.contributor.author Polykrati, K en
dc.date.accessioned 2014-03-01T02:45:13Z
dc.date.available 2014-03-01T02:45:13Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32207
dc.subject Clustering en
dc.subject Data mining en
dc.subject Hierarchical en
dc.subject Large databases en
dc.subject Sorting en
dc.subject.other Chlorine compounds en
dc.subject.other Cluster analysis en
dc.subject.other Curing en
dc.subject.other Decision support systems en
dc.subject.other Drying en
dc.subject.other Flow of solids en
dc.subject.other Information management en
dc.subject.other Information technology en
dc.subject.other Search engines en
dc.subject.other Technology en
dc.subject.other Clustering en
dc.subject.other Convex shapes en
dc.subject.other Data mining en
dc.subject.other Hierarchical en
dc.subject.other International conferences en
dc.subject.other Large databases en
dc.subject.other New algorithm en
dc.subject.other Non-convex shapes en
dc.subject.other Sorting en
dc.subject.other Clustering algorithms en
dc.title CUZ: An improved clustering algorithm en
heal.type conferenceItem en
heal.identifier.primary 10.1109/CIT.2008.Workshops.118 en
heal.identifier.secondary http://dx.doi.org/10.1109/CIT.2008.Workshops.118 en
heal.identifier.secondary 4568477 en
heal.publicationDate 2008 en
heal.abstract Clustering is for many years now one of the most complex and most studied problems in data mining. Until now the most commonly used algorithm for finding groups of similar objects in large databases is CURE [I]. The main advantage of CURE, compared to other clustering algorithms, is its ability to identify non spherical or rectangular shaped objects. In this paper we present a new algorithm called CUZ (Clustering Using Zones). The main innovation of CUZ lies in the technique that it uses to calculate the representatives. This technique overcomes the problem of identifying clusters with non-convex shapes. Experimental results show that CUZ is a generally competitive technique, while it is particularly adequate when we have to do with clusters that do not have convex shapes. © 2008 IEEE. DOI 10.1109/CIT.2008.Workshops.118. en
heal.journalName Proceedings - 8th IEEE International Conference on Computer and Information Technology Workshops, CIT Workshops 2008 en
dc.identifier.doi 10.1109/CIT.2008.Workshops.118 en
dc.identifier.spage 43 en
dc.identifier.epage 48 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής