dc.contributor.author |
Kyriazis, D |
en |
dc.contributor.author |
Tserpes, K |
en |
dc.contributor.author |
Kousiouris, G |
en |
dc.contributor.author |
Menychtas, A |
en |
dc.contributor.author |
Katsaros, G |
en |
dc.contributor.author |
Varvarigou, T |
en |
dc.date.accessioned |
2014-03-01T02:45:13Z |
|
dc.date.available |
2014-03-01T02:45:13Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32208 |
|
dc.subject |
Cost Effectiveness |
en |
dc.subject |
Data Aggregation |
en |
dc.subject |
Data Analysis |
en |
dc.subject |
Genetic Algorithm |
en |
dc.subject |
Grid Computing |
en |
dc.subject |
Historical Data |
en |
dc.subject.other |
Distributed parameter networks |
en |
dc.subject.other |
Application scenarios |
en |
dc.subject.other |
Data aggregations |
en |
dc.subject.other |
Grid environments |
en |
dc.subject.other |
Grid technologies |
en |
dc.subject.other |
Grid-based approaches |
en |
dc.subject.other |
Historical datum |
en |
dc.subject.other |
Medical informations |
en |
dc.subject.other |
Personalized health cares |
en |
dc.subject.other |
Applications |
en |
dc.title |
Data aggregation and analysis: A grid-based approach for medicine and biology |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ISPA.2008.34 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ISPA.2008.34 |
en |
heal.identifier.secondary |
4725237 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
A constantly increasing number of applications from various scientific sectors are finding their way towards adopting Grid technologies in order to take advantage of their capabilities: the advent of Grid environments made feasible the solution of computational intensive problems in a reliable and cost-effective way. In this paper we present a Grid-based approach for aggregation of data that are obtained from various sources (e.g. cameras, sensors) and their analysis with the use of genetic algorithms. By also taking into consideration general historical data and patient-specific medical information, we present the realization of the proposed approach with an application scenario for personalized healthcare and medicine. © 2008 IEEE. |
en |
heal.journalName |
Proceedings of the 2008 International Symposium on Parallel and Distributed Processing with Applications, ISPA 2008 |
en |
dc.identifier.doi |
10.1109/ISPA.2008.34 |
en |
dc.identifier.spage |
841 |
en |
dc.identifier.epage |
848 |
en |