dc.contributor.author |
Papaioannou, I |
en |
dc.contributor.author |
Roussaki, I |
en |
dc.contributor.author |
Anagnostou, M |
en |
dc.date.accessioned |
2014-03-01T02:45:13Z |
|
dc.date.available |
2014-03-01T02:45:13Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32217 |
|
dc.subject |
Automated negotiations |
en |
dc.subject |
Early detection of unsuccessful negotiations |
en |
dc.subject |
Hybrid negotiation strategies |
en |
dc.subject |
MLP & GR neural networks |
en |
dc.subject |
NN-assisted negotiation strategies |
en |
dc.subject |
Opponent behaviour prediction |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Cybernetics |
en |
dc.subject.other |
Artificial intelligence systems |
en |
dc.subject.other |
Automated negotiations |
en |
dc.subject.other |
Early detection of unsuccessful negotiations |
en |
dc.subject.other |
Hybrid negotiation strategies |
en |
dc.subject.other |
Hybrid strategies |
en |
dc.subject.other |
Intelligent computing |
en |
dc.subject.other |
International conferences |
en |
dc.subject.other |
Negotiation strategies |
en |
dc.subject.other |
NN-assisted negotiation strategies |
en |
dc.subject.other |
Opponent behaviour prediction |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Detecting unsuccessful automated negotiation threads when opponents employ hybrid strategies |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-85984-0_4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-85984-0_4 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In artificial intelligence systems, building agents that negotiate on behalf of their owners aiming to maximise their utility is a quite challenging research field. In this paper, such agents are enhanced with techniques based on neural networks (NNs) to predict their opponents' hybrid negotiation behaviour, thus achieving more profitable results. The NNs are used to early detect the cases where agreements are not achievable, supporting the decision of the agents to withdraw or not from the negotiation threads. The designed NN-assisted negotiation strategies have been evaluated via extensive experiments and are proven to be very useful. © 2008 Springer-Verlag Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-540-85984-0_4 |
en |
dc.identifier.volume |
5227 LNAI |
en |
dc.identifier.spage |
27 |
en |
dc.identifier.epage |
39 |
en |