dc.contributor.author |
Giannakakis, GA |
en |
dc.contributor.author |
Nikita, KS |
en |
dc.date.accessioned |
2014-03-01T02:45:15Z |
|
dc.date.available |
2014-03-01T02:45:15Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1557170X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32240 |
|
dc.subject |
Causal Relation |
en |
dc.subject |
Efficient Estimation |
en |
dc.subject |
event-related potential erp |
en |
dc.subject |
Flow Pattern |
en |
dc.subject |
Information Flow |
en |
dc.subject |
Temporal Dynamics |
en |
dc.subject |
Directed Transfer Function |
en |
dc.subject |
kalman filter |
en |
dc.subject |
Time Dependent |
en |
dc.subject |
Time Varying |
en |
dc.subject.other |
Control theory |
en |
dc.subject.other |
Electroencephalography |
en |
dc.subject.other |
Flow patterns |
en |
dc.subject.other |
Patient monitoring |
en |
dc.subject.other |
Adaptive autoregressive |
en |
dc.subject.other |
Brain areas |
en |
dc.subject.other |
Causal relations |
en |
dc.subject.other |
Connectivity patterns |
en |
dc.subject.other |
Direct flows |
en |
dc.subject.other |
Directed transfer functions |
en |
dc.subject.other |
EEG signals |
en |
dc.subject.other |
Event related-potentials |
en |
dc.subject.other |
Information flows |
en |
dc.subject.other |
Multivariate autoregressive |
en |
dc.subject.other |
Non stationaries |
en |
dc.subject.other |
Physiological signals |
en |
dc.subject.other |
Simulated signals |
en |
dc.subject.other |
Temporal dynamics |
en |
dc.subject.other |
Time-dependent flows |
en |
dc.subject.other |
Time-varying |
en |
dc.subject.other |
Time varying systems |
en |
dc.title |
Estimation of time-varying causal connectivity on EEG signals with the use of adaptive autoregressive parameters |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/IEMBS.2008.4649963 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/IEMBS.2008.4649963 |
en |
heal.identifier.secondary |
4649963 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper, we address the problem of time-varying causal connectivity estimators on Electro-encephalographic (EEG) signals by means of Directed Transfer Function (DTF). The DTF method reveals causal information flows between brain areas, while direct DTF (dDTF) is able to distinguish and estimate only direct flows. Since neuro-physiological signals such as EEG and event related potentials (ERP) can be nonstationary, their temporal dynamics cannot be satisfactorily represented. Time-varying dDTF can be estimated using Kalman Filter for adaptive calculation of multivariate autoregressive coefficients. This approach can reveal transient causal relations and model time-dependent flow patterns. This approach was applied to simulated signals and the results indicated that time-varying dDTF can provide efficient estimates of connectivity patterns. © 2008 IEEE. |
en |
heal.journalName |
Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - ""Personalized Healthcare through Technology"" |
en |
dc.identifier.doi |
10.1109/IEMBS.2008.4649963 |
en |
dc.identifier.volume |
2008 |
en |
dc.identifier.spage |
3512 |
en |
dc.identifier.epage |
3515 |
en |