HEAL DSpace

Estimation of time-varying causal connectivity on EEG signals with the use of adaptive autoregressive parameters

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Giannakakis, GA en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:45:15Z
dc.date.available 2014-03-01T02:45:15Z
dc.date.issued 2008 en
dc.identifier.issn 1557170X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32240
dc.subject Causal Relation en
dc.subject Efficient Estimation en
dc.subject event-related potential erp en
dc.subject Flow Pattern en
dc.subject Information Flow en
dc.subject Temporal Dynamics en
dc.subject Directed Transfer Function en
dc.subject kalman filter en
dc.subject Time Dependent en
dc.subject Time Varying en
dc.subject.other Control theory en
dc.subject.other Electroencephalography en
dc.subject.other Flow patterns en
dc.subject.other Patient monitoring en
dc.subject.other Adaptive autoregressive en
dc.subject.other Brain areas en
dc.subject.other Causal relations en
dc.subject.other Connectivity patterns en
dc.subject.other Direct flows en
dc.subject.other Directed transfer functions en
dc.subject.other EEG signals en
dc.subject.other Event related-potentials en
dc.subject.other Information flows en
dc.subject.other Multivariate autoregressive en
dc.subject.other Non stationaries en
dc.subject.other Physiological signals en
dc.subject.other Simulated signals en
dc.subject.other Temporal dynamics en
dc.subject.other Time-dependent flows en
dc.subject.other Time-varying en
dc.subject.other Time varying systems en
dc.title Estimation of time-varying causal connectivity on EEG signals with the use of adaptive autoregressive parameters en
heal.type conferenceItem en
heal.identifier.primary 10.1109/IEMBS.2008.4649963 en
heal.identifier.secondary http://dx.doi.org/10.1109/IEMBS.2008.4649963 en
heal.identifier.secondary 4649963 en
heal.publicationDate 2008 en
heal.abstract In this paper, we address the problem of time-varying causal connectivity estimators on Electro-encephalographic (EEG) signals by means of Directed Transfer Function (DTF). The DTF method reveals causal information flows between brain areas, while direct DTF (dDTF) is able to distinguish and estimate only direct flows. Since neuro-physiological signals such as EEG and event related potentials (ERP) can be nonstationary, their temporal dynamics cannot be satisfactorily represented. Time-varying dDTF can be estimated using Kalman Filter for adaptive calculation of multivariate autoregressive coefficients. This approach can reveal transient causal relations and model time-dependent flow patterns. This approach was applied to simulated signals and the results indicated that time-varying dDTF can provide efficient estimates of connectivity patterns. © 2008 IEEE. en
heal.journalName Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'08 - ""Personalized Healthcare through Technology"" en
dc.identifier.doi 10.1109/IEMBS.2008.4649963 en
dc.identifier.volume 2008 en
dc.identifier.spage 3512 en
dc.identifier.epage 3515 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής