HEAL DSpace

Fitting local field potentials generating model of the basal ganglia to actual recorded signals

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsirogiannis, GL en
dc.contributor.author Tagaris, GA en
dc.contributor.author Sakas, D en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:45:16Z
dc.date.available 2014-03-01T02:45:16Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32252
dc.subject Critical Parameter en
dc.subject Deep Brain Stimulation en
dc.subject Frequency Domain en
dc.subject Generic Model en
dc.subject Local Field Potential en
dc.subject Optimal Method en
dc.subject Subthalamic Nucleus en
dc.subject Basal Ganglia en
dc.subject.other Basal ganglia en
dc.subject.other Critical parameter en
dc.subject.other Deep brain stimulation en
dc.subject.other Frequency domains en
dc.subject.other High beta en
dc.subject.other Local field potentials en
dc.subject.other Microelectrode recording en
dc.subject.other Optimization method en
dc.subject.other Parkinson's disease en
dc.subject.other Pathophysiology en
dc.subject.other Population levels en
dc.subject.other Recorded signals en
dc.subject.other Subthalamic nucleus en
dc.subject.other Synaptic strengths en
dc.subject.other Bioinformatics en
dc.subject.other Independent component analysis en
dc.title Fitting local field potentials generating model of the basal ganglia to actual recorded signals en
heal.type conferenceItem en
heal.identifier.primary 10.1109/BIBE.2008.4696825 en
heal.identifier.secondary http://dx.doi.org/10.1109/BIBE.2008.4696825 en
heal.identifier.secondary 4696825 en
heal.publicationDate 2008 en
heal.abstract A population level model of the basal ganglia has been shown to reliably reproduce the local field potential (LFP) activity recorded from subthalamic nucleus (STN) during typical microelectrode recording sessions. The purpose of the present work is to investigate optimization methods that can be used to fit that model to actual recorded LFPs. For that, we utilize data derived from seven parkinsonian subjects prior to the permanent implantation of the deep brain stimulation (DBS) electrode. For the fitting, five optimization methods are used, combined with two methods for estimating the error between the actual recorded and the model predicted LFP signals in the frequency domain. The procedures are focused on re-generating the characteristic beta peak of the STN LFP. The results indicate that the model is able to reproduce the beta peak in various frequencies in the range of both low and high beta, while at the same time, the values of the critical parameters bringing the model in that area of behavior reveal the crucial role of the synaptic strengths in Parkinson's disease pathophysiology. en
heal.journalName 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 en
dc.identifier.doi 10.1109/BIBE.2008.4696825 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής