HEAL DSpace

Gene-nutrition interactions in the onset of obesity as cardiovascular disease risk factor based on a computational intelligence method

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Valavanis, IK en
dc.contributor.author Mougiakakou, SG en
dc.contributor.author Marinos, S en
dc.contributor.author Karkalis, G en
dc.contributor.author Grimaldi, KA en
dc.contributor.author Gill, R en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:45:17Z
dc.date.available 2014-03-01T02:45:17Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32259
dc.subject Artificial Neural Network en
dc.subject Body Mass Index Bmi en
dc.subject Cardiovascular Disease en
dc.subject Cardiovascular Disease Risk Factor en
dc.subject Complex Traits en
dc.subject Computational Intelligence en
dc.subject Cross Validation en
dc.subject gene-environment interaction en
dc.subject Genetic Variation en
dc.subject Genetics en
dc.subject System Evaluation en
dc.subject Risk Factors en
dc.subject.other Artificial Neural Network en
dc.subject.other Body mass index en
dc.subject.other Cardio-vascular disease risk factors en
dc.subject.other Cardiovascular disease en
dc.subject.other Complex traits en
dc.subject.other Computational intelligence en
dc.subject.other Computational intelligence methods en
dc.subject.other Cross validation en
dc.subject.other Gene-environment interaction en
dc.subject.other Genetic information en
dc.subject.other Genetic variation en
dc.subject.other Human obesity en
dc.subject.other Input variables en
dc.subject.other Output variables en
dc.subject.other Resampling technique en
dc.subject.other Risk factors en
dc.subject.other System use en
dc.subject.other Backpropagation en
dc.subject.other Bioinformatics en
dc.subject.other Chemical vapor deposition en
dc.subject.other Neural networks en
dc.subject.other Nutrition en
dc.title Gene-nutrition interactions in the onset of obesity as cardiovascular disease risk factor based on a computational intelligence method en
heal.type conferenceItem en
heal.identifier.primary 10.1109/BIBE.2008.4696678 en
heal.identifier.secondary 4696678 en
heal.identifier.secondary http://dx.doi.org/10.1109/BIBE.2008.4696678 en
heal.publicationDate 2008 en
heal.abstract Identification of gene-gene and gene-environment interactions that contribute in the onset of a multi-factorial disease supports the prevention of diseases like the Cardiovascular Disease (CVD). Body Mass Index (BMI), a measure of human obesity, is an independent risk factor of CVD. Furthermore, it is known that a subject's BMI is affected both by his/her lifestyle, e.g. nutrition, and genetic profile. Aim of the paper is to predict a subject's onset of obesity using lifestyle and genetic information. The prediction is performed by a computational intelligence based system using a Parameter Decreasing Method (PDM) combined with an Artificial Neural Network (ANN). The system uses an initial set of 63 input variables corresponding to sex, average nutrition intake measurements, and genetic variations to identify the 32 most important ones that affect BMI. The selected variables are the ones to interact with each other towards the complex trait of BMI, which is used as a 2-class output variable (BMI ≤ 25 vs. BMI>25) in the ANN. The system achieved a mean accuracy of the system evaluated by a 3-cross validation resampling technique equal to 77.89%. en
heal.journalName 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 en
dc.identifier.doi 10.1109/BIBE.2008.4696678 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής