dc.contributor.author |
Ntalianis, K |
en |
dc.contributor.author |
Doulamis, A |
en |
dc.contributor.author |
Tsapatsoulis, N |
en |
dc.contributor.author |
Doulamis, N |
en |
dc.date.accessioned |
2014-03-01T02:45:28Z |
|
dc.date.available |
2014-03-01T02:45:28Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32273 |
|
dc.subject |
Action Modeling |
en |
dc.subject |
Human Action Analysis |
en |
dc.subject |
Human Object Detection |
en |
dc.subject |
User Transparent Interaction |
en |
dc.subject |
Video Annotation |
en |
dc.subject.other |
Action modeling |
en |
dc.subject.other |
Content semantics |
en |
dc.subject.other |
File servers |
en |
dc.subject.other |
Human actions |
en |
dc.subject.other |
Integrated frameworks |
en |
dc.subject.other |
Object Detection |
en |
dc.subject.other |
Spatiotemporal analysis |
en |
dc.subject.other |
User interaction |
en |
dc.subject.other |
Video annotations |
en |
dc.subject.other |
Video streams |
en |
dc.subject.other |
Management |
en |
dc.subject.other |
Semantics |
en |
dc.subject.other |
Servers |
en |
dc.subject.other |
Technical presentations |
en |
dc.subject.other |
Video streaming |
en |
dc.title |
Human action analysis, annotation and modeling in video streams based on implicit user interaction |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/1463542.1463554 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1463542.1463554 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
This paper proposes an integrated framework for analyzing human actions in video streams. Despite most current approaches that are just based on automatic spatiotemporal analysis of sequences, the proposed method introduces the implicit user-in-the-loop concept for dynamically mining semantics and annotating video streams. This work sets a new and ambitious goal: to recognize, model and properly use ""average user's"" selections, preferences and perception, for dynamically extracting content semantics. The proposed approach is expected to add significant value to hundreds of billions of non-annotated or inadequately annotated video streams existing in the Web, file servers, databases etc. Furthermore expert annotators can gain important knowledge relevant to user preferences, selections, styles of searching and perception. Copyright 2008 ACM. |
en |
heal.journalName |
MM'08 - Proceedings of the 2008 ACM International Conference on Multimedia, with co-located Symposium and Workshops |
en |
dc.identifier.doi |
10.1145/1463542.1463554 |
en |
dc.identifier.spage |
65 |
en |
dc.identifier.epage |
72 |
en |