HEAL DSpace

Human action analysis, annotation and modeling in video streams based on implicit user interaction

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ntalianis, K en
dc.contributor.author Doulamis, A en
dc.contributor.author Tsapatsoulis, N en
dc.contributor.author Doulamis, N en
dc.date.accessioned 2014-03-01T02:45:28Z
dc.date.available 2014-03-01T02:45:28Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32273
dc.subject Action Modeling en
dc.subject Human Action Analysis en
dc.subject Human Object Detection en
dc.subject User Transparent Interaction en
dc.subject Video Annotation en
dc.subject.other Action modeling en
dc.subject.other Content semantics en
dc.subject.other File servers en
dc.subject.other Human actions en
dc.subject.other Integrated frameworks en
dc.subject.other Object Detection en
dc.subject.other Spatiotemporal analysis en
dc.subject.other User interaction en
dc.subject.other Video annotations en
dc.subject.other Video streams en
dc.subject.other Management en
dc.subject.other Semantics en
dc.subject.other Servers en
dc.subject.other Technical presentations en
dc.subject.other Video streaming en
dc.title Human action analysis, annotation and modeling in video streams based on implicit user interaction en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1463542.1463554 en
heal.identifier.secondary http://dx.doi.org/10.1145/1463542.1463554 en
heal.publicationDate 2008 en
heal.abstract This paper proposes an integrated framework for analyzing human actions in video streams. Despite most current approaches that are just based on automatic spatiotemporal analysis of sequences, the proposed method introduces the implicit user-in-the-loop concept for dynamically mining semantics and annotating video streams. This work sets a new and ambitious goal: to recognize, model and properly use ""average user's"" selections, preferences and perception, for dynamically extracting content semantics. The proposed approach is expected to add significant value to hundreds of billions of non-annotated or inadequately annotated video streams existing in the Web, file servers, databases etc. Furthermore expert annotators can gain important knowledge relevant to user preferences, selections, styles of searching and perception. Copyright 2008 ACM. en
heal.journalName MM'08 - Proceedings of the 2008 ACM International Conference on Multimedia, with co-located Symposium and Workshops en
dc.identifier.doi 10.1145/1463542.1463554 en
dc.identifier.spage 65 en
dc.identifier.epage 72 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής