HEAL DSpace

Improving the performance of multithreaded sparse matrix-vector multiplication using index and value compression

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kourtis, K en
dc.contributor.author Goumas, G en
dc.contributor.author Koziris, N en
dc.date.accessioned 2014-03-01T02:45:30Z
dc.date.available 2014-03-01T02:45:30Z
dc.date.issued 2008 en
dc.identifier.issn 01903918 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32283
dc.subject Coarse Grained en
dc.subject Memory Bandwidth en
dc.subject Shared Memory en
dc.subject Sparse Matrix en
dc.subject Structured Data en
dc.subject.other Coarse grains en
dc.subject.other Compression schemes en
dc.subject.other Delta encoding en
dc.subject.other Memory bandwidth requirements en
dc.subject.other Multithreaded en
dc.subject.other Numerical values en
dc.subject.other Shared memories en
dc.subject.other Sparse matrixes en
dc.subject.other Structural datums en
dc.subject.other Vector multiplications en
dc.subject.other Data compression en
dc.subject.other Encoding (symbols) en
dc.subject.other Online searching en
dc.subject.other Vectors en
dc.subject.other Data storage equipment en
dc.title Improving the performance of multithreaded sparse matrix-vector multiplication using index and value compression en
heal.type conferenceItem en
heal.identifier.primary 10.1109/ICPP.2008.62 en
heal.identifier.secondary http://dx.doi.org/10.1109/ICPP.2008.62 en
heal.identifier.secondary 4625888 en
heal.publicationDate 2008 en
heal.abstract The Sparse Matrix-Vector Multiplication kernel exhibits limited potential for taking advantage of modern shared memory architectures due to its large memory bandwidth requirements. To decrease memory contention and improve the performance of the kernel we propose two compression schemes. The first, called CSR-DU, targets the reduction of the matrix structural data by applying coarse grain delta encoding for the column indices. The second scheme, called CSR-VI, targets the reduction of the numerical values using indirect indexing and can only be applied to matrices which contain a small number of unique values. Evaluation of both methods on a rich matrix set showed that they can significantly improve the performance of the multithreaded version of the kernel and achieve good scalability for large matrices. © 2008 IEEE. en
heal.journalName Proceedings of the International Conference on Parallel Processing en
dc.identifier.doi 10.1109/ICPP.2008.62 en
dc.identifier.spage 511 en
dc.identifier.epage 519 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής