dc.contributor.author |
Antonopoulos, A |
en |
dc.contributor.author |
Bangtsson, H |
en |
dc.contributor.author |
Alakula, M |
en |
dc.contributor.author |
Manias, S |
en |
dc.date.accessioned |
2014-03-01T02:45:31Z |
|
dc.date.available |
2014-03-01T02:45:31Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
02759306 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32288 |
|
dc.subject |
Hybrid Electric Vehicle |
en |
dc.subject |
Hybrid Vehicle |
en |
dc.subject |
Internal Combustion Engine |
en |
dc.subject |
Power Converter |
en |
dc.subject |
Power Density |
en |
dc.subject |
Power Flow |
en |
dc.subject |
Power Semiconductor Devices |
en |
dc.subject |
Silicon Carbide |
en |
dc.subject |
General Motors |
en |
dc.subject.other |
Automobile cooling systems |
en |
dc.subject.other |
Automobile electronic equipment |
en |
dc.subject.other |
Automobile engines |
en |
dc.subject.other |
Automobiles |
en |
dc.subject.other |
Combustion |
en |
dc.subject.other |
Control theory |
en |
dc.subject.other |
Cooling |
en |
dc.subject.other |
Crystals |
en |
dc.subject.other |
Electric automobiles |
en |
dc.subject.other |
Electric conductivity |
en |
dc.subject.other |
Electric vehicles |
en |
dc.subject.other |
Fuzzy control |
en |
dc.subject.other |
Internal combustion engines |
en |
dc.subject.other |
Nonmetals |
en |
dc.subject.other |
Power electronics |
en |
dc.subject.other |
Secondary batteries |
en |
dc.subject.other |
Semiconducting silicon compounds |
en |
dc.subject.other |
Semiconductor device manufacture |
en |
dc.subject.other |
Semiconductor device models |
en |
dc.subject.other |
Semiconductor devices |
en |
dc.subject.other |
Semiconductor materials |
en |
dc.subject.other |
Silicon |
en |
dc.subject.other |
Silicon carbide |
en |
dc.subject.other |
Smoke |
en |
dc.subject.other |
Standards |
en |
dc.subject.other |
Thermochemistry |
en |
dc.subject.other |
Vehicles |
en |
dc.subject.other |
Applications. |
en |
dc.subject.other |
Combustion engines |
en |
dc.subject.other |
Driving cycles |
en |
dc.subject.other |
General Motors |
en |
dc.subject.other |
Higher temperatures |
en |
dc.subject.other |
Hybrid electric vehicles |
en |
dc.subject.other |
Hybrid vehicles |
en |
dc.subject.other |
Hybrid-electric vehicle |
en |
dc.subject.other |
Innovative technologies |
en |
dc.subject.other |
Mild hybrid |
en |
dc.subject.other |
Power densities |
en |
dc.subject.other |
Power Flow |
en |
dc.subject.other |
Power semiconductor devices |
en |
dc.subject.other |
Silicon carbide (SiC) |
en |
dc.subject.other |
Automobile parts and equipment |
en |
dc.title |
Introducing a silicon carbide inverter for hybrid electric vehicles |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/PESC.2008.4592116 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/PESC.2008.4592116 |
en |
heal.identifier.secondary |
4592116 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
This paper presents a power converter that can be used in hybrid electric vehicle applications. The unique characteristic of this converter is that it is based on Silicon Carbide (SiC) semiconductors. It is intended for a Belt driven Alternator and Starter (BAS), a design suggested by General Motors, in a mild hybrid car. SiC is an innovative technology that seems to have many advantages compared to the silicon that is commonly used today. It is believed that it is going to replace silicon in many applications. The idea to use SiC for a Hybrid Electric Vehicle (HEV) application was born when trying to reduce the size, weight and cost and therefore increase the power density of vehicle's electronics. The proposed design focuses on the different functions of a BAS and the converter's behavior in each case. A hybrid vehicle is simulated, functioning accordingly to the BAS design and the power flow over the power semiconductor devices is calculated. The aim of this work is to estimate the converter's losses over a standard driving cycle and decide if it is possible then to use the combustion engine's cooling system to cool the semiconductors as well, something obviously impossible when working with silicon semiconductors, as an Internal Combustion Engine (ICE) operates in higher temperatures than silicon can stand. ©2008 IEEE. |
en |
heal.journalName |
PESC Record - IEEE Annual Power Electronics Specialists Conference |
en |
dc.identifier.doi |
10.1109/PESC.2008.4592116 |
en |
dc.identifier.spage |
1321 |
en |
dc.identifier.epage |
1325 |
en |