HEAL DSpace

Multi-agent hierarchical architecture modeling kinematic chains employing continuous RL learning with fuzzified state space

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karigiannis, JN en
dc.contributor.author Tzafestas, CS en
dc.date.accessioned 2014-03-01T02:45:39Z
dc.date.available 2014-03-01T02:45:39Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32316
dc.subject Action Selection en
dc.subject Artificial Intelligent en
dc.subject Control Architecture en
dc.subject Degree of Freedom en
dc.subject Knowledge Acquisition en
dc.subject multi-agent architecture en
dc.subject Numerical Experiment en
dc.subject Reinforcement Learning en
dc.subject Robot Control Architecture en
dc.subject State Space en
dc.subject Task Model en
dc.subject Multi Agent System en
dc.subject.other Agents en
dc.subject.other Coordination reactions en
dc.subject.other Hierarchical systems en
dc.subject.other Kinematics en
dc.subject.other Knowledge acquisition en
dc.subject.other Manipulators en
dc.subject.other Motion control en
dc.subject.other Reinforcement en
dc.subject.other Robotics en
dc.subject.other Robots en
dc.subject.other 4 degrees of freedoms en
dc.subject.other Action selections en
dc.subject.other Closed kinematic chains en
dc.subject.other Continuous problems en
dc.subject.other Continuous spaces en
dc.subject.other Control architectures en
dc.subject.other Control methodologies en
dc.subject.other Cooperation and coordinations en
dc.subject.other Degree of similarities en
dc.subject.other Degrees of freedoms en
dc.subject.other Dexterous manipulators en
dc.subject.other Hierarchical architectures en
dc.subject.other Hierarchical robots en
dc.subject.other Kinematic chains en
dc.subject.other Methodological frameworks en
dc.subject.other Multi agents en
dc.subject.other Multi-agent architectures en
dc.subject.other Numerical experiments en
dc.subject.other Reinforcement learning methods en
dc.subject.other Robotic systems en
dc.subject.other State spaces en
dc.subject.other Task models en
dc.subject.other Multi agent systems en
dc.title Multi-agent hierarchical architecture modeling kinematic chains employing continuous RL learning with fuzzified state space en
heal.type conferenceItem en
heal.identifier.primary 10.1109/BIOROB.2008.4762862 en
heal.identifier.secondary http://dx.doi.org/10.1109/BIOROB.2008.4762862 en
heal.identifier.secondary 4762862 en
heal.publicationDate 2008 en
heal.abstract In the context of multi-agent systems, we are proposing a hierarchical robot control architecture that comprises artificial intelligence (AI) techniques and traditional control methodologies, based on the realization of a learning team of agents in a continuous problem setting. In a multiagent system, action selection is important for cooperation and coordination among the agents. By employing reinforcement learning (RL) methods in a fuzzified state-space, we accomplish to design a control architecture and a corresponding methodology, engaged in a continuous space, which enables the agents to learn, over a period of time, to perform sequences of continuous actions in a cooperative manner, in order to reach their goal without any prior generated task model. By organizing the agents in a nested architecture, as proposed in this work, a type of problem-specific recursive knowledge acquisition is attempted. Furthermore, the agents try to exploit the knowledge gathered in order to be in position to execute tasks that indicate certain degree of similarity. The agents correspond in fact to independent degrees of freedom of the system, and achieve to gain experience over the task that they collaboratively perform, by exploring and exploiting their state-to-action mapping space. A numerical experiment is presented in this paper, performed on a simulated planar 4 degrees of freedom (DOF) manipulator, in order to evaluate both the proposed hierarchical multiagent architecture as well as the proposed methodological framework. It is anticipated that such an approach can be highly scalable for the control of robotic systems that are kinematically more complex, comprising multiple DOFs and potentially redundancies in open or closed kinematic chains, particularly dexterous manipulators. © 2008 IEEE. en
heal.journalName Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008 en
dc.identifier.doi 10.1109/BIOROB.2008.4762862 en
dc.identifier.spage 716 en
dc.identifier.epage 723 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής