HEAL DSpace

Multilevel cancer modeling in the clinical environment: Simulating the behavior of wilms tumor in the context of the SIOP 2001/GPOH clinical trial and the ACGT project

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiadi, ECh en
dc.contributor.author Stamatakos, GS en
dc.contributor.author Graf, NM en
dc.contributor.author Kolokotroni, EA en
dc.contributor.author Dionysiou, DD en
dc.contributor.author Hoppe, A en
dc.contributor.author Uzunoglu, NK en
dc.date.accessioned 2014-03-01T02:45:39Z
dc.date.available 2014-03-01T02:45:39Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32317
dc.subject Clinical Data en
dc.subject Clinical Practice en
dc.subject Clinical Trial en
dc.subject Dynamic Model en
dc.subject in silico en
dc.subject Model Development en
dc.subject Solid Tumor en
dc.subject Tumor Cells en
dc.subject Tumor Growth en
dc.subject wilms tumor en
dc.subject.other Biological mechanisms en
dc.subject.other Chemotherapeutic agents en
dc.subject.other Clinical data en
dc.subject.other Clinical environments en
dc.subject.other Clinical practices en
dc.subject.other Clinical trial en
dc.subject.other Dynamics models en
dc.subject.other In-silico en
dc.subject.other Multiscale en
dc.subject.other Numerical results en
dc.subject.other Optimal treatment en
dc.subject.other Optimization system en
dc.subject.other Patient specific en
dc.subject.other Relative importance en
dc.subject.other Solid tumors en
dc.subject.other Transition rates en
dc.subject.other Tumor cells en
dc.subject.other Tumor growth en
dc.subject.other Tumor models en
dc.subject.other Tumor response en
dc.subject.other Bioinformatics en
dc.subject.other Clarification en
dc.subject.other Convergence of numerical methods en
dc.subject.other Dynamics en
dc.subject.other Optimization en
dc.subject.other Patient treatment en
dc.subject.other Tumors en
dc.title Multilevel cancer modeling in the clinical environment: Simulating the behavior of wilms tumor in the context of the SIOP 2001/GPOH clinical trial and the ACGT project en
heal.type conferenceItem en
heal.identifier.primary 10.1109/BIBE.2008.4696759 en
heal.identifier.secondary 4696759 en
heal.identifier.secondary http://dx.doi.org/10.1109/BIBE.2008.4696759 en
heal.publicationDate 2008 en
heal.abstract Mathematical and computational tumor dynamics models can provide considerable insight into the relative importance and interdependence of related biological mechanisms. They may also suggest the existence of optimal treatment windows in the generic setting. Nevertheless, they cannot be translated into clinical practice unless they undergo a strict and thorough clinical validation and adaptation. In this context one of the major actions of the EC funded project ""Advancing Clinico-Genomic Trials on Cancer"" (ACGT) is dedicated to the development of a patient specific four dimensional multiscale tumor model mimicking the nephroblastoma tumor response to chemotherapeutic agents according to the SIOP 2001/GPOH clinical trial. Combined administration of vincristine and dactinomycin is considered. The patient's pseudoanonymized imaging, histopathological, molecular and clinical data are carefully exploited. The paper briefly outlines the basics of the model developed by the In Silico Oncology Group and particularly stresses the effect of stem/clonogenic, progenitor and differentiated tumor cells on the overall tumor dynamics. The need for matching the cell category transition rates to the cell category relative populations of free tumor growth for an already large solid tumor at the start of simulation has been clarified. A technique has been suggested and succesfully applied in order to ensure satisfaction of this condition. The concept of a nomogram matching the cell category transition rates to the cell category relative populations at the treatment baseline is introduced. Convergence issues are addressed and indicative numerical results are presented. Qualitative agreement of the model's behavior with the corresponding clinical trial experience supports its potential to constitute the basis for an optimization system within the clinical environment following completion of its clinical validation and optimization. In silico treatment experimentation in the patient individualized context is expected to constitute the primary application of the model. en
heal.journalName 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 en
dc.identifier.doi 10.1109/BIBE.2008.4696759 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής