dc.contributor.author |
Lampis, M |
en |
dc.contributor.author |
Kaouri, G |
en |
dc.contributor.author |
Mitsou, V |
en |
dc.date.accessioned |
2014-03-01T02:45:42Z |
|
dc.date.available |
2014-03-01T02:45:42Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
03029743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32332 |
|
dc.subject |
Digraph decompositions |
en |
dc.subject |
Parameterized complexity |
en |
dc.subject |
Treewidth |
en |
dc.subject.other |
Complexity measures |
en |
dc.subject.other |
Digraph decompositions |
en |
dc.subject.other |
Graph problems |
en |
dc.subject.other |
Hamiltonian |
en |
dc.subject.other |
NP-hard |
en |
dc.subject.other |
Parameterized complexity |
en |
dc.subject.other |
Polynomial algorithms |
en |
dc.subject.other |
Treewidth |
en |
dc.subject.other |
Decision trees |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Hamiltonians |
en |
dc.subject.other |
Trees (mathematics) |
en |
dc.subject.other |
Parallel processing systems |
en |
dc.title |
On the algorithmic effectiveness of digraph decompositions and complexity measures |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1007/978-3-540-92182-0_22 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/978-3-540-92182-0_22 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We place our focus on the gap between treewidth's success in producing fixed-parameter polynomial algorithms for hard graph problems, and specifically Hamiltonian Circuit and Max Cut, and the failure of its directed variants (directed tree-width [9], DAG-width [11] and kelly-width [8]) to replicate it in the realm of digraphs. We answer the question of why this gap exists by giving two hardness results: we show that Directed Hamiltonian Circuit is W[2]-hard when the parameter is the width of the input graph, for any of these widths, and that Max Di Cut remains NP-hard even when restricted to DAGs, which have the minimum possible width under all these definitions. Our results also apply to directed pathwidth. © 2008 Springer Berlin Heidelberg. |
en |
heal.journalName |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
en |
dc.identifier.doi |
10.1007/978-3-540-92182-0_22 |
en |
dc.identifier.volume |
5369 LNCS |
en |
dc.identifier.spage |
220 |
en |
dc.identifier.epage |
231 |
en |