HEAL DSpace

Optimizing Sparse Matrix-Vector Multiplication using index and value compression

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kourtis, K en
dc.contributor.author Goumas, G en
dc.contributor.author Koziris, N en
dc.date.accessioned 2014-03-01T02:45:43Z
dc.date.available 2014-03-01T02:45:43Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32341
dc.subject Data compression en
dc.subject Memory bandwidth en
dc.subject Sparse matrix en
dc.subject.other Bandwidth en
dc.subject.other Bandwidth compression en
dc.subject.other Numerical methods en
dc.subject.other Online searching en
dc.subject.other Telecommunication systems en
dc.subject.other Vectors en
dc.subject.other Compression methods en
dc.subject.other Data volumes en
dc.subject.other Index compressions en
dc.subject.other Memory bandwidth en
dc.subject.other Numerical values en
dc.subject.other Research works en
dc.subject.other Sparse matrix en
dc.subject.other Speed-up en
dc.subject.other Data compression en
dc.title Optimizing Sparse Matrix-Vector Multiplication using index and value compression en
heal.type conferenceItem en
heal.identifier.primary 10.1145/1366230.1366244 en
heal.identifier.secondary http://dx.doi.org/10.1145/1366230.1366244 en
heal.publicationDate 2008 en
heal.abstract Previous research work has identified memory bandwidth as the main bottleneck of the ubiquitous Sparse Matrix-Vector Multiplication kernel. To attack this problem, we aim at reducing the overall data volume of the algorithm. Typical sparse matrix representation schemes store only the nonzero elements of the matrix and employ additional indexing information to properly iterate over these elements. In this paper we propose two distinct compression methods targeting index and numerical values respectively. We perform a set of experiments on a large real-world matrix set and demonstrate that the index compression method can be applied successfully to a wide range of matrices. Moreover, the value compression method is able to achieve impressive speedups in a more limited yet important class of sparse matrices that contain a small number of distinct values. Copyright 2008 ACM. en
heal.journalName Conference on Computing Frontiers - Proceedings of the 2008 Conference on Computing Frontiers, CF'08 en
dc.identifier.doi 10.1145/1366230.1366244 en
dc.identifier.spage 87 en
dc.identifier.epage 96 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής