dc.contributor.author |
Kourtis, K |
en |
dc.contributor.author |
Goumas, G |
en |
dc.contributor.author |
Koziris, N |
en |
dc.date.accessioned |
2014-03-01T02:45:43Z |
|
dc.date.available |
2014-03-01T02:45:43Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32341 |
|
dc.subject |
Data compression |
en |
dc.subject |
Memory bandwidth |
en |
dc.subject |
Sparse matrix |
en |
dc.subject.other |
Bandwidth |
en |
dc.subject.other |
Bandwidth compression |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Online searching |
en |
dc.subject.other |
Telecommunication systems |
en |
dc.subject.other |
Vectors |
en |
dc.subject.other |
Compression methods |
en |
dc.subject.other |
Data volumes |
en |
dc.subject.other |
Index compressions |
en |
dc.subject.other |
Memory bandwidth |
en |
dc.subject.other |
Numerical values |
en |
dc.subject.other |
Research works |
en |
dc.subject.other |
Sparse matrix |
en |
dc.subject.other |
Speed-up |
en |
dc.subject.other |
Data compression |
en |
dc.title |
Optimizing Sparse Matrix-Vector Multiplication using index and value compression |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1145/1366230.1366244 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/1366230.1366244 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Previous research work has identified memory bandwidth as the main bottleneck of the ubiquitous Sparse Matrix-Vector Multiplication kernel. To attack this problem, we aim at reducing the overall data volume of the algorithm. Typical sparse matrix representation schemes store only the nonzero elements of the matrix and employ additional indexing information to properly iterate over these elements. In this paper we propose two distinct compression methods targeting index and numerical values respectively. We perform a set of experiments on a large real-world matrix set and demonstrate that the index compression method can be applied successfully to a wide range of matrices. Moreover, the value compression method is able to achieve impressive speedups in a more limited yet important class of sparse matrices that contain a small number of distinct values. Copyright 2008 ACM. |
en |
heal.journalName |
Conference on Computing Frontiers - Proceedings of the 2008 Conference on Computing Frontiers, CF'08 |
en |
dc.identifier.doi |
10.1145/1366230.1366244 |
en |
dc.identifier.spage |
87 |
en |
dc.identifier.epage |
96 |
en |