dc.contributor.author |
Tsilimantos, D |
en |
dc.contributor.author |
Kaklamani, D |
en |
dc.contributor.author |
Tsoulos, G |
en |
dc.date.accessioned |
2014-03-01T02:45:43Z |
|
dc.date.available |
2014-03-01T02:45:43Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32346 |
|
dc.subject |
Basestation configuration problem |
en |
dc.subject |
Network planning |
en |
dc.subject |
Particle swarm optimization |
en |
dc.subject |
Soft handover |
en |
dc.subject |
UMTS |
en |
dc.subject |
WCDMA |
en |
dc.subject.other |
Computer networks |
en |
dc.subject.other |
Heuristic algorithms |
en |
dc.subject.other |
Heuristic programming |
en |
dc.subject.other |
Nuclear propulsion |
en |
dc.subject.other |
Basestation configuration problem |
en |
dc.subject.other |
Network planning |
en |
dc.subject.other |
Particle swarm optimization |
en |
dc.subject.other |
Soft handover |
en |
dc.subject.other |
UMTS |
en |
dc.subject.other |
WCDMA |
en |
dc.subject.other |
Particle swarm optimization (PSO) |
en |
dc.title |
Particle swarm optimization for UMTS WCDMA network planning |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/ISWPC.2008.4556215 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/ISWPC.2008.4556215 |
en |
heal.identifier.secondary |
4556215 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The planning and optimization of UMTS WCDMA radio networks is a very complex and challenging procedure. In order to obtain accurate results, this planning must take into account key WCDMA features, such as soft handover (SHO). However, the optimization of base station (BS) configuration considering this feature has not been investigated in previous work. In this paper we describe a programming model which considers the SHO mechanism in order to address the general problem of BS configuration. A very promising heuristic optimization algorithm, namely particle swarm optimization (PSO), is used in order to tackle this NP-hard problem. Results from a realistic simulation scenario are provided and key network parameters such as capacity and other-to-own cell interference are presented. © 2008 IEEE. |
en |
heal.journalName |
3rd International Symposium on Wireless Pervasive Computing, ISWPC 2008, Proceedings |
en |
dc.identifier.doi |
10.1109/ISWPC.2008.4556215 |
en |
dc.identifier.spage |
283 |
en |
dc.identifier.epage |
287 |
en |