dc.contributor.author |
Razavi, A |
en |
dc.contributor.author |
Kontogiannis, K |
en |
dc.date.accessioned |
2014-03-01T02:45:44Z |
|
dc.date.available |
2014-03-01T02:45:44Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
07303157 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/32348 |
|
dc.subject |
Approximate Matching |
en |
dc.subject |
Collaborative Application |
en |
dc.subject |
Log Analysis |
en |
dc.subject |
Software Industry |
en |
dc.subject |
Software Systems |
en |
dc.subject |
Trace Analysis |
en |
dc.subject |
Multi User |
en |
dc.subject |
viterbi algorithm |
en |
dc.subject.other |
Computer applications |
en |
dc.subject.other |
Computer software maintenance |
en |
dc.subject.other |
Computers |
en |
dc.subject.other |
Health |
en |
dc.subject.other |
Risk assessment |
en |
dc.subject.other |
Viterbi algorithm |
en |
dc.subject.other |
Word processing |
en |
dc.subject.other |
Approximate matching |
en |
dc.subject.other |
Component-based |
en |
dc.subject.other |
Diagnostic systems |
en |
dc.subject.other |
Industrial software |
en |
dc.subject.other |
Log analysis |
en |
dc.subject.other |
Log data |
en |
dc.subject.other |
Policy-driven |
en |
dc.subject.other |
Software industry |
en |
dc.subject.other |
Software monitoring |
en |
dc.subject.other |
System maintenance |
en |
dc.subject.other |
Threat modeling |
en |
dc.subject.other |
Viterbi |
en |
dc.subject.other |
Computer software |
en |
dc.title |
Pattern and policy driven log analysis for software monitoring |
en |
heal.type |
conferenceItem |
en |
heal.identifier.primary |
10.1109/COMPSAC.2008.81 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/COMPSAC.2008.81 |
en |
heal.identifier.secondary |
4591541 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The component-based nature of large industrial software systems that consist of a number of diverse collaborating applications, pose significant challenges with respect to system maintenance, monitoring, auditing, and diagnosing. In this context, a monitoring and diagnostic system interprets log data to recognize patterns of significant events that conform to specific Threat Models. Threat Models have been used by the software industry for analyzing and documenting a system's risks in order to understand a system's threat profile. In this paper, we propose a framework whereby patterns of significant events are represented as expressions of a specialized monitoring language that are used to annotate specific threat models. An approximate matching technique that is based on the Viterbi algorithm is then used to identify whether system generated events, fit the given patterns. The technique has been applied and evaluated considering threat models and monitoring policies in logs that have been obtained from multi-user MS-Windows© based systems. © 2008 IEEE. |
en |
heal.journalName |
Proceedings - International Computer Software and Applications Conference |
en |
dc.identifier.doi |
10.1109/COMPSAC.2008.81 |
en |
dc.identifier.spage |
108 |
en |
dc.identifier.epage |
111 |
en |