HEAL DSpace

Protein similarity networks and genetic algorithm driven feature selection for fold recognition

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Valavanis, IK en
dc.contributor.author Spyrou, GM en
dc.contributor.author Nikita, KS en
dc.date.accessioned 2014-03-01T02:45:45Z
dc.date.available 2014-03-01T02:45:45Z
dc.date.issued 2008 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/32367
dc.subject Cross Validation en
dc.subject Feature Selection en
dc.subject Fold Recognition en
dc.subject Genetic Algorithm en
dc.subject Machine Learning en
dc.subject Protein Sequence en
dc.subject Protein Structure en
dc.subject PSN en
dc.subject Random Walk en
dc.subject.other Cross validation en
dc.subject.other Feature selection en
dc.subject.other Fold recognition en
dc.subject.other Machine learning techniques en
dc.subject.other Protein sequences en
dc.subject.other Protein structures en
dc.subject.other Query proteins en
dc.subject.other Random Walk en
dc.subject.other Similarity network en
dc.subject.other Testing sets en
dc.subject.other Bioinformatics en
dc.subject.other Genetic algorithms en
dc.subject.other Learning algorithms en
dc.subject.other Optimization en
dc.subject.other Statistical tests en
dc.subject.other Set theory en
dc.title Protein similarity networks and genetic algorithm driven feature selection for fold recognition en
heal.type conferenceItem en
heal.identifier.primary 10.1109/BIBE.2008.4696704 en
heal.identifier.secondary http://dx.doi.org/10.1109/BIBE.2008.4696704 en
heal.identifier.secondary 4696704 en
heal.publicationDate 2008 en
heal.abstract Fold recognition based on sequence-derived features is a complex classification problem and usuall sequence-derived features are exploited using proper machine learning techniques. Here we adress the task of fold recognition on a protein similarity network (PSN) basis. We construct a protein sequence similarity network (PSeSN) using a set of 125 sequence-derived features for an available set of 311 proteins.PSeSN is optimized by using a Genetic Algorithm (GA) to select the features that construct a PSeSN which is as similar as possible with the corresponding protein structure similarity network (PStSN). A random walk based algorithm is then utilized to recognize the fold of a query protein sequence by calculating its affinities to sequences-vertices both in the initial and the optimized PSeSN. Total accuracy (TA) measurements obtained using 10-fold cross validation show that the use of 48 out of 125 sequence-derived features (optimized PSeSN) yielded better results (mean TA: 0.35 in testing sets) than the initial PSeSN (mean TA: 0.316 in testing sets). en
heal.journalName 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008 en
dc.identifier.doi 10.1109/BIBE.2008.4696704 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής